7,745 research outputs found

    Elevated temperature deformation of thoria dispersed nickel-chromium

    Get PDF
    The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion

    Factors which influence directional coarsening of Gamma prime during creep in nickel-base superalloy single crystals

    Get PDF
    Changes in the morphology of the gamma prime precipitate were examined as a function of time during creep at 982 C in 001 oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80 pct., the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The effects of initial microstructure and alloy composition of raft development and creep properties were investigated. Directional coarsening of gamma prime begins during primary creep and continues well after the onset of second state creep. The thickness of the rafts remains constant up through the onset of tertiary creep a clear indication of the stability of the finely-spaced gamma/gamma prime lamellar structure. The thickness of the rafts which formed was equal to the initial gamma prime size which was present prior to testing. The single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma/gamma prime interfaces per unit volume of material. Reducing the Mo content by only 0.73 wt. pct. increased the creep life by a factor of three, because the precipitation of a third phase was eliminated

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte

    Effect of chemical disorder on NiMnSb investigated by Appearance Potential Spectroscopy: a theoretical study

    Full text link
    The half-Heusler alloy NiMnSb is one of the local-moment ferromagnets with unique properties for future applications. Band structure calculations predict exclusively majority bands at the Fermi level, thus indicating {100%} spin polarization there. As one thinks about applications and the design of functional materials, the influence of chemical disorder in these materials must be considered. The magnetization, spin polarization, and electronic structure are expected to be sensitive to structural and stoichiometric changes. In this contribution, we report on an investigation of the spin-dependent electronic structure of NiMnSb. We studied the influence of chemical disorder on the unoccupied electronic density of states by use of the ab-initio Coherent Potential Approximation method. The theoretical analysis is discussed along with corresponding spin-resolved Appearance Potential Spectroscopy measurements. Our theoretical approach describes the spectra as the fully-relativistic self-convolution of the matrix-element weighted, orbitally resolved density of states.Comment: JPD submitte

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Massive quark propagator and competition between chiral and diquark condensate

    Get PDF
    The Green-function approach has been extended to the moderate baryon density region in the framework of an extended Nambu--Jona-Lasinio model, and the thermodynamic potential with both chiral and diquark condensates has been evaluated by using the massive quark propagator. The phase structure along the chemical potential direction has been investigated and the strong competition between the chiral and diquark condensate has been analyzed by investigating the influence of the diquark condensate on the sharp Fermi surface. The influence of the diquark condensate on the quark properties has been investigated, even though the quarks in the color breaking phase are very different from that in the chiral breaking phase, the difference between quarks in different colors is very small.Comment: Revtex, 34 pages, 7 figures, section V revised, accepted by PR

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards
    • …
    corecore