9,434 research outputs found
Masses of light tetraquarks and scalar mesons in the relativistic quark model
Masses of the ground state light tetraquarks are dynamically calculated in
the framework of the relativistic diquark-antidiquark picture. The internal
structure of the diquark is taken into account by calculating the form factor
of the diquark-gluon interaction in terms of the overlap integral of the
diquark wave functions. It is found that scalar mesons with masses below 1 GeV:
f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with
the light tetraquark interpretation.Comment: 9 pages, Report-no adde
Ab-initio calculation of the Gilbert damping parameter via linear response formalism
A Kubo-Greenwood-like equation for the Gilbert damping parameter is
presented that is based on the linear response formalism. Its implementation
using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method
in combination with Coherent Potential Approximation (CPA) alloy theory allows
it to be applied to a wide range of situations. This is demonstrated with
results obtained for the bcc alloy system FeCo as well as for a
series of alloys of permalloy with 5d transition metals.
To account for the thermal displacements of atoms as a scattering mechanism,
an alloy-analogy model is introduced. The corresponding calculations for Ni
correctly describe the rapid change of when small amounts of
substitutional Cu are introduced
Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes
Non-ionized media subject to strong fields can become locally ionized by
penetration of finger-shaped streamers. We study negative streamers between
planar electrodes in a simple deterministic continuum approximation. We observe
that for sufficiently large fields, the streamer tip can split. This happens
close to Firsov's limit of `ideal conductivity'. Qualitatively the tip
splitting is due to a Laplacian instability quite like in viscous fingering.
For future quantitative analytical progress, our stability analysis of planar
fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised
version of March 10, 200
Recommended from our members
Laser Micro Sintering – A Quality Leap through Improvement of Powder Packing
Laser micro sintering, a modification of selective laser sintering for freeform fabrication
of micro-parts, was continuously upgraded since its first application. Poor density of the powder
layers has been a persisting problem that had to be dealt with from the beginning. One solution
was the application of high intensity q-switched laser pulses. Compaction of the material and
improvement of the sinter resolution was achieved. But with these pulse-regimes only limited
density of the sintered body has been achievable. Recently special efforts have been made to get
rid of or at least reduce these drawbacks by markedly higher compaction of the respective powder
layers. There is clear evidence that with sufficiently compacted powder layers even laser micro
sintering with continuous radiation should be feasible. Till recently laser sintering of metal had
been applied mainly to produce monolithic components. With the upgraded technique direct
generation of micro devices with freely movable subassemblies can be possible.Mechanical Engineerin
Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements
The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles
Relativistic effects in the production of pseudoscalar and vector doubly heavy mesons from e^+e^- annihilation
On the basis of the perturbative QCD and the relativistic quark model we
investigate the relativistic and bound state effects in the production
processes of a pair of -wave doubly heavy mesons with opposite charge
conjugation consisting of and quarks. All possible relativistic
corrections in the production amplitude including the terms connected with the
transformation law of the bound state wave function to the reference frame of
the moving pseudoscalar and vector mesons are taken
into account. We obtain a growth of the cross section for the reaction
due to considered effects by a factor
in the range of the center-of-mass energy GeV.Comment: 18 pages, 4 figure
Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host
Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of its aquatic invertebrate host, Daphnia magna. We found that high food carbon : phosphorus (C: P) ratios significantly reduced infection rates of Pasteuria in Daphnia and led to lower within-host pathogen multiplication. In addition, greater virulent effects of bacterial infection on host reproduction were found in Daphnia-consuming P-deficient food. Poor Daphnia elemental nutrition thus reduced the growth and reproduction of its bacterial parasite, Pasteuria. The effects of poor host nutrition on the pathogen were further evidenced by Pasteuria's greater inhibition of reproduction in P-limited Daphnia. Our results provide strong evidence that elemental food quality can significantly influence the incidence and intensity of infectious disease in invertebrate hosts
{BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives
Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/
Positive streamers in ambient air and a N2:O2-mixture (99.8 : 0.2)
Photographs show distinct differences between positive streamers in air or in
a nitrogen-oxygen mixture (0.2% O2). The streamers in the mixture branch more
frequently, but the branches also extinguish more easily. Probably related to
that, the streamers in the mixture propagate more in a zigzag manner while they
are straighter in air. Furthermore, streamers in the mixture can become longer;
they are thinner and more intense.Comment: 2 pages, 4 figures, paper is accepted for IEEE Trans. Plasma Sci. and
scheduled to appear in June 200
- …