348 research outputs found

    Hamiltonian anomalies of bound states in QED

    Full text link
    The Bound State in QED is described in systematic way by means of nonlocal irreducible representations of the nonhomogeneous Poincare group and Dirac's method of quantization. As an example of application of this method we calculate triangle diagram ParaPositroniumγγPara-Positronium \to \gamma\gamma. We show that the Hamiltonian approach to Bound State in QED leads to anomaly-type contribution to creation of pair of parapositronium by two photon.Comment: 12 pages, 2 figures. Proceedings of the conference "Symmetry Methods in Physics XV", July 12-16, 2011, Dubna, Russi

    Jovian deep magnetotail composition and structure

    Get PDF
    We analyze plasma ion observations from the Solar Wind Around Pluto instrument on New Horizons as it traveled back through the dusk flank of the Jovian magnetotail from ~600 to more than 2500 Jovian radii behind the planet. We find that at all distances, light ions (mostly protons) dominate the heavy ions (S++ and O+) that are far more abundant in the near Jupiter plasma disk and that were expected to be the primary ions filling the Jovian magnetotail. This key new observation might indicate that heavy ions are confined closer to the equator than the spacecraft trajectory or a substantial addition of light ions via reconnection and/or mixing along the magnetopause boundary. However, because we find no evidence for acceleration of the tail plasma with distance, a more likely explanation seems to be that the heavy ions are preferentially released down the dawn flank of the magnetotail. Perhaps, this occurs as a part of the process where flux tubes, after expanding as they rotate across the near‐tail region, need to pull back inward in order to fit within the dawnside of the magnetopause. A second major finding of this study is that there are two dominant periods of the plasma structures in the Jovian magnetotail: 3.53 (0.18 full width at half maximum (FWHM)) and 5.35 (0.38 FWHM) days. Remarkably, the first of these is identical within the errors to Europa's orbital period (3.55 days). Both of these results should provide important new fodder for Jovian magnetospheric theories and lead to a better understanding of Jupiter's magnetosphere

    Asymptotic Regge Trajectories of Non-strange Mesons

    Full text link
    We analyze the asymptotic behavior of Regge trajectories of non-strange mesons. In contrast to an existing belief, it is demonstrated that for the asymptotically linear Regge trajectories the width of heavy hadrons cannot linearly depend on their mass. Using the data on masses and widths of rho_J, omega_J, a_J and f_J mesons for the spin values J \leq 6, we extract the parameters of the asymptotically linear Regge trajectory predicted by the finite width model of quark gluon bags. As it is shown the obtained parameters for the data set B correspond to the cross-over temperature lying in the interval 170.9-175.3 MeV which is consistent with the kinetic freeze-out temperature of early hadronizing particles found in relativistic heavy ion collisions at and above the highest SPS energy.Comment: 14 pages, 3 figure

    Fine-Scale Movements of the Broadnose Sevengill Shark and Its Main Prey, the Gummy Shark

    Get PDF
    Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day

    Inhibition of Apoptosis Blocks Human Motor Neuron Cell Death in a Stem Cell Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients

    The Spatial Distribution of LGR5+ Cells Correlates With Gastric Cancer Progression

    Get PDF
    In this study we tested the prevalence, histoanatomical distribution and tumour biological significance of the Wnt target protein and cancer stem cell marker LGR5 in tumours of the human gastrointestinal tract. Differential expression of LGR5 was studied on transcriptional (real-time polymerase chain reaction) and translational level (immunohistochemistry) in malignant and corresponding non-malignant tissues of 127 patients comprising six different primary tumour sites, i.e. oesophagus, stomach, liver, pancreas, colon and rectum. The clinico-pathological significance of LGR5 expression was studied in 100 patients with gastric carcinoma (GC). Non-neoplastic tissue usually harboured only very few scattered LGR5+ cells. The corresponding carcinomas of the oesophagus, stomach, liver, pancreas, colon and rectum showed significantly more LGR5+ cells as well as significantly higher levels of LGR5-mRNA compared with the corresponding non-neoplastic tissue. Double staining experiments revealed a coexpression of LGR5 with the putative stem cell markers CD44, Musashi-1 and ADAM17. Next we tested the hypothesis that the sequential changes of gastric carcinogenesis, i.e. chronic atrophic gastritis, intestinal metaplasia and invasive carcinoma, are associated with a reallocation of the LGR5+ cells. Interestingly, the spatial distribution of LGR5 changed: in non-neoplastic stomach mucosa, LGR5+ cells were found predominantly in the mucous neck region; in intestinal metaplasia LGR5+ cells were localized at the crypt base, and in GC LGR5+ cells were present at the luminal surface, the tumour centre and the invasion front. The expression of LGR5 in the tumour centre and invasion front of GC correlated significantly with the local tumour growth (T-category) and the nodal spread (N-category). Furthermore, patients with LGR5+ GCs had a shorter median survival (28.0±8.6 months) than patients with LGR5− GCs (54.5±6.3 months). Our results show that LGR5 is differentially expressed in gastrointestinal cancers and that the spatial histoanatomical distribution of LGR5+ cells has to be considered when their tumour biological significance is sought

    Intervals of Intense Energetic Electron Beams Over Jupiter's Poles

    Get PDF
    Juno's Jupiter Energetic particle Detector Instrument often detects energetic electron beams over Jupiter's polar regions. In this paper, we document a subset of intense magnetic field‐aligned beams of energetic electrons moving away from Jupiter at high magnetic latitudes both north and south of the planet. The number fluxes of these beams are often dominated by electrons with energies above about 1 MeV. These very narrow beams can create broad angular responses in the Jupiter Energetic particle Detector Instrument with unique signatures in the detector count rates, probably because of >10 MeV electrons. We use these signatures to identify the most intense beams. These beams occur primarily above the swirl region of the polar cap aurora. This polar region is described as being of low brightness and high absorption and the most magnetically “open” at Jupiter

    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived cultures

    Get PDF
    Neurotrophic requirements of human motor neurons defined using amplified and purified stem-cell derived culturesHuman motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.This work was funded by Project A.L.S., P2ALS and NYSTEM grant number CO24415. The work of N.J.L. was supported by the Portuguese Foundation for Science and Technology SFRH/BD/33421/2008 and the Luso-American Development Foundation. B.J.-K. was supported by the National Institute of Neurological Disorders and Stroke (NINDS). L.R. was supported by the Swedish Brain Foundation/Hjarnfonden. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    Get PDF
    BACKGROUND: As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. METHODOLOGY/PRINCIPAL FINDINGS: We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. CONCLUSIONS/SIGNIFICANCE: We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories

    Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4

    Get PDF
    Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional condi- tions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho- PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein syn- thesis in skeletal muscle in part by induction of ER stress
    corecore