1,642 research outputs found

    Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene

    Full text link
    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane, but is instead governed by a crossover between two competing molecular transport mechanisms.Comment: 6 pages, 3 figure

    Space shuttle: Heat transfer investigation of the McDonnell-Douglas delta wing orbiter at a nominal Mach number of 10.5

    Get PDF
    Heat transfer tests for the delta wing orbiter were conducted in a hypervelocity wind tunnel. A 1.1 percent scale model was tested at a Mach number of approximately 10.5 over an angle of attack range from 10 to 60 degrees over a length Reynolds number range from 5 times 10 to the 6th power to 24 times 10 to the 6th power. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint. Limited pressure measurements were obtained

    Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites

    Get PDF
    This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites

    Optical imaging of resonant electrical carrier injection into individual quantum dots

    Full text link
    We image the micro-electroluminescence (EL) spectra of self-assembled InAs quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and demonstrate optical detection of resonant carrier injection into a single QD. Resonant tunneling of electrons and holes into the QDs at bias voltages below the flat-band condition leads to sharp EL lines characteristic of individual QDs, accompanied by a spatial fragmentation of the surface EL emission into small and discrete light- emitting areas, each with its own spectral fingerprint and Stark shift. We explain this behavior in terms of Coulomb interaction effects and the selective excitation of a small number of QDs within the ensemble due to preferential resonant tunneling paths for carriers.Comment: 4 page

    On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of their Diffusion

    Full text link
    Recent transient absorption experiments on CdS nanorods suggest that photoexcited holes rapidly trap to the surface of these particles and then undergo diffusion along the rod surface. In this paper, we present a semiperiodic DFT model for the CdS nanocrystal surface, analyze it, and comment on the nature of both the hole-trap states and the mechanism by which the holes diffuse. Hole states near the top of the valence band form an energetic near continuum with the bulk, and localize to the non-bonding sp3^3 orbitals on surface sulfur atoms. After localization, the holes form nonadiabatic small polarons that move between the sulfur orbitals on the surface of the particle in a series of uncorrelated, incoherent, thermally-activated hops at room temperature. The surface-trapped holes are deeply in the weak-electronic coupling limit and, as a result, undergo slow diffusion.Comment: 4 figure

    Cytogenetic studies of early myeloid progenitor compartments in Ph<SUP>1</SUP>- positive chronic myeloid leukemia. II. Long-term culture reveals the persistence of Ph<SUP>1</SUP>-negative progenitors in treated as well as newly diagnosed patients

    Get PDF
    We recently showed that long-term marrow cultures can be used to demonstrate the presence of Philadelphia (Ph1) negative progenitors in patients with newly diagnosed Ph1-positive chronic myeloid leukemia (CML). We now report results for 6 chronic phase patients studied 5-83 mo postdiagnosis and an additional 3 newly diagnosed patients. Marrow metaphases were exclusively Ph1-positive. Clonogenic assays revealed a minor population of Ph1-negative progenitors in 3 cases (1 treated, 2 untreated). Long-term marrow culture adherent layers contained Ph1- negative progenitors in 6 cases (3 treated, 3 untreated). Whenever this occurred, the Ph1-negative population had become the only one detectable within 3-4 wk, and this was always associated with a rapid decline of the Ph1-positive population. For 2 of the 3 cases where Ph1- negative progenitors were not detected, there was a similar rapid decline in the Ph1-positive population in culture. In the other case, Ph1-positive progenitors were maintained at levels typically seen in normal long-term marrow cultures. These results suggest that chromosomally normal stem cells may persist for a considerable period in the marrow of some, but perhaps not all, patients with CML, even in the face of maintenance chemotherapy. In addition, they provide new evidence of heterogeneity in this disease, as shown by the variable ability of Ph1-positive progenitor populations to be maintained in vitro

    Dewatering saturated, networked suspensions with a screw press

    Get PDF
    A model is presented for the dewatering of a saturated two-phase medium in a screw press. The model accounts for the detailed two-phase rheological behaviour of the pressed material and splits the press into two zones, an initial well-mixed constant-pressure region followed by an axial transport region in which the total pressure steadily increases. In this latter region, a slowly varying helical coordinate transformation is introduced to help reduce the dynamics to an annular bi-axial compression of the two-phase medium. Unlike previous modelling, the transition point between the two zones is determined self-consistently, rather than set a priori, and the pressure along the length of the press is deduced from the rheology of the two-phase flow rather than averaging the two-phase dynamics over a cross section of the press. The model is compared to experimental observations of the dewatering of a paper-making fibre suspension and of a clay slurry, and is shown to reproduce operational data
    corecore