5,598 research outputs found

    Satellite Relay Telemetry of Seismic Data in Earthquake Prediction and Control

    Get PDF
    The Satellite Telemetry Earthquake Monitoring Program was started to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project. The principal advantages of the satellite relay system over commercial telephone or microwave systems were: (1) it could be made less prone to massive failure during a major earthquake; (2) it could be extended readily into undeveloped regions; and (3) it could provide flexible, uniform communications over large sections of major global tectonic zones. Fundamental characteristics of a communications system to cope with the large volume of raw data collected by a short-period seismograph network are discussed

    ERTS-1 image contributes to understanding of geologic structures related to Managua earthquake, 1972

    Get PDF
    ERTS-1 imaged the western portion of Nicaragua on December 24, 1972, one day after the central part of the city of Managua was devastated by a major earthquake which measured 5.6 on the Richter scale. ERTS-1 images reveal sets of lineaments (which may reflect fault systems) along any one of which movement could have taken place. One set includes a line of active volcanoes that parallels the coast and constitutes the southwestern edge of the Nicaraguan Depression, a regional graben which cuts obliquely across the Central American isthmus. This trend is offset approximately 10km in a right lateral geometric sense just west of the city of Managua. A parallel lineament, north of Lake Managua, marks the northeast edge of the graben. A second set, extends northward to northwestward from the mouth of the Rio Grande (Viejo) north of Lake Managua and can be projected southward across the lake to Managua. It is this set along which geometric offset of the volcanic lineament appears to have taken place

    Basin-scale multi-decadal analysis of hydraulic fracturing and seismicity in western Canada shows non-recurrence of induced runaway fault rupture

    Get PDF
    Hydraulic fracturing (HF) is a reservoir stimulation technique that has been widely deployed in recent years to increase the productivity of light oil and/or natural gas from organic-rich, low-permeability formations. Although the process of fracturing a rock typically results in microseismic events of magnitude  0.5. Most previous studies of induced earthquakes have been limited to a single operation and/or seismicity sequence. To better understand the observed variability of the seismic response to HF stimulations at a basin scale, we compiled HF data for all unconventional wells hydraulic fractured in the WCSB between 2000 and 2020, together with the seismicity reported during the same period. We grouped these observations into bins measuring 0.2° in longitude and 0.1° in latitude, or approximately 13 by 11 km. We identified 14 areas where large magnitude events resulted in high S(EFF) values, implying runaway rupture had taken place. However, we find that in these areas, sustained fluid injection did not lead to persistent high S(EFF) values. Instead, as injection continued, S(EFF) values returned to values less than 0.5. This suggests that there is a limited budget of tectonic strain energy available to generate runaway rupture events: once this is released, event magnitudes decrease even if high volume injection persists

    Numerical simulations of mixed states quantum computation

    Full text link
    We describe quantum-octave package of functions useful for simulations of quantum algorithms and protocols. Presented package allows to perform simulations with mixed states. We present numerical implementation of important quantum mechanical operations - partial trace and partial transpose. Those operations are used as building blocks of algorithms for analysis of entanglement and quantum error correction codes. Simulation of Shor's algorithm is presented as an example of package capabilities.Comment: 6 pages, 4 figures, presented at Foundations of Quantum Information, 16th-19th April 2004, Camerino, Ital

    Orbits and Pulsations of the Classical ζ Aurigae Binaries

    Get PDF
    We have derived new orbits for ζ Aur, 32 Cyg, and 31 Cyg with observations from the Tennessee State University (TSU) Automatic Spectroscopic Telescope, and used them to identify nonorbital velocities of the cool supergiant components of these systems. We measure periods in those deviations, identify unexpected long-period changes in the radial velocities, and place upper limits on the rotation of these stars. These radial-velocity variations are not obviously consistent with radial pulsation theory, given what we know about the masses and sizes of the components. Our concurrent photometry detected the nonradial pulsations driven by tides (ellipsoidal variation) in both ζ Aur and 32 Cyg, at a level and phasing roughly consistent with simple theory to first order, although they seem to require moderately large gravity darkening. However, the K component of 32 Cyg must be considerably bigger than expected, or have larger gravity darkening than ζ Aur, to fit its amplitude. However, again there is precious little evidence for the normal radial pulsation of cool stars in our photometry. Hα shows some evidence for chromospheric heating by the B component in both ζ Aur and 32 Cyg, and the three stars show among them a meager ~2-3 outbursts in their winds of the sort seen occasionally in cool supergiants. We point out two fundamental questions in the interpretation of these stars: (1) whether it is appropriate to model the surface brightness as gravity darkening and (2) whether much of the nonorbital velocity structure may actually represent changes in the convective flows in the stars\u27 atmospheres

    Maximizing nearest neighbour entanglement in finitely correlated qubit--chains

    Full text link
    We consider translationally invariant states of an infinite one dimensional chain of qubits or spin-1/2 particles. We maximize the entanglement shared by nearest neighbours via a variational approach based on finitely correlated states. We find an upper bound of nearest neighbour concurrence equal to C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a completely different procedure. The obtained state maximizing nearest neighbour entanglement seems to approximate the maximally entangled mixed states (MEMS). Further we investigate in detail several other properties of the so obtained optimal state.Comment: 12 pages, 4 figures, 2nd version minor change

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table
    • …
    corecore