55 research outputs found

    The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    Get PDF
    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included

    Measurements of the Diffuse Ultraviolet Background and the Terrestrial Airglow with the Space Telescope Imaging Spectrograph

    Get PDF
    Far-UV observations in and near the Hubble Deep Fields demonstrate that the Space Telescope Imaging Spectrograph (STIS) can potentially obtain unique and precise measurements of the diffuse far-ultraviolet background. Although STIS is not the ideal instrument for such measurements, high-resolution images allow Galactic and extragalactic objects to be masked to very faint magnitudes, thus ensuring a measurement of the truly diffuse UV signal. The programs we have analyzed were not designed for this scientific purpose, but would be sufficient to obtain a very sensitive measurement if it were not for a weak but larger-than-expected signal from airglow in the STIS 1450-1900 A bandpass. Our analysis shows that STIS far-UV crystal quartz observations taken near the limb during orbital day can detect a faint airglow signal, most likely from NI\1493, that is comparable to the dark rate and inseparable from the far-UV background. Discarding all but the night data from these datasets gives a diffuse far-ultraviolet background measurement of 501 +/- 103 ph/cm2/sec/ster/A, along a line of sight with very low Galactic neutral hydrogen column (N_HI = 1.5E20 cm-2) and extinction (E(B-V)=0.01 mag). This result is in good agreement with earlier measurements of the far-UV background, and should not include any significant contribution from airglow. We present our findings as a warning to other groups who may use the STIS far-UV camera to observe faint extended targets, and to demonstrate how this measurement may be properly obtained with STIS.Comment: 7 pages, Latex. 4 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in A

    Short-term relationship between solar irradiances and equatorial peak electron densities

    Get PDF
    [1] The short-term relationship of the equatorial peak electron density and the solar short-wavelength irradiance is examined using foF2 observations from Jicamarca, Peru and recent solar irradiance measurements from satellites. Solar soft X-ray measurements from both the Student Nitric Oxide Explorer (SNOE) ( 1998 - 2000) and Thermosphere Ionosphere Mesosphere Energetics Dynamics ( TIMED) ( 2002 - 2004) satellites as well as extreme ultraviolet (EUV) measurements from the TIMED satellite are used. Soft X-rays show similar or higher correlation with foF2 at short timescales ( 27 days or less) than EUV does, although the EUV correlation is higher for longer periods. For the short-term variations, both SNOE and TIMED observations have a higher correlation in the morning ( similar to 0.46) than in the afternoon ( similar to 0.1). In the afternoon, SNOE observations have a higher correlation ( similar to 0.2) with foF2 than the TIMED observations ( similar to 0.1 correlation), which may be due to differences in the solar cycle. At morning times, foF2 has a similar to 27-day variation, consistent with the solar rotation rate. After noon, but not in the morning, a similar to 13.5-day variation consistently appears in foF2. This similar to 13.5-day variation is attributed to geomagnetic influences

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    Get PDF
    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway
    corecore