864 research outputs found

    Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

    Get PDF
    This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties

    High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp

    Full text link
    We report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with only 8 mJ pulse energy on a 100 \mu m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real time" optimization of accelerator parameters. Well-collimated and stable electron beams with a quasi-monoenergetic peak in excess of 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Get PDF
    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS<sup>−</sup>) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr<sup>−1</sup>, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS<sup>−</sup> (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr<sup>−1</sup>, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m<sup>−3</sup>, with values up to 400 ng m<sup>−3</sup> over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20%) in CCN (at a supersaturation (<i>S</i>) of 0.2%) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to sea-salt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration

    High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 Femtosecond Laser Pulses on a Density Downramp

    No full text
    International audienceWe report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with 8 mJ pulse energy on a 100 ”m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing " real time " optimization of accelerator parameters. Well-collimated and stable electron beams with quasi-monoenergetic peaks around 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves

    High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 Femtosecond Laser Pulses on a Density Downramp

    No full text
    International audienceWe report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with 8 mJ pulse energy on a 100 ”m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing " real time " optimization of accelerator parameters. Well-collimated and stable electron beams with quasi-monoenergetic peaks around 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves

    Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)

    Get PDF
    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We used these combined with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods

    Detection and parameter estimation of binary neutron star merger remnants

    Get PDF
    Detection and parameter estimation of binary neutron star merger remnants can shed light on the physics of hot matter at supranuclear densities. Here we develop a fast, simple model that can generate gravitational waveforms, and show it can be used for both detection and parameter estimation of post-merger remnants. The model consists of three exponentially-damped sinusoids with a linear frequency-drift term. The median fitting factors between the model waveforms and numerical-relativity simulations exceed 0.90. We detect remnants at a post-merger signal-to-noise ratio of ≄7\ge 7 using a Bayes-factor detection statistic with a threshold of 3000. We can constrain the primary post-merger frequency to ±1.21.4%\pm_{1.2}^{1.4}\% at post-merger signal-to-noise ratios of 15 with an increase in precision to ±0.20.3%\pm_{0.2}^{0.3}\% for post-merger signal-to-noise ratios of 50. The tidal coupling constant can be constrained to ±129%\pm^{9}_{12}\% at post-merger signal-to-noise ratios of 15, and ±5%\pm 5\% at post-merger signal-to-noise ratios of 50 using a hierarchical inference model
    • 

    corecore