27 research outputs found
Haemostatic Changes in Five Patients Infected with Ebola Virus
Knowledge on haemostatic changes in humans infected with Ebola virus is limited due to safety concerns and access to patient samples. Ethical approval was obtained to collect plasma samples from patients in Sierra Leone infected with Ebola virus over time and samples were analysed for clotting time, fibrinogen, and D-dimer levels. Plasma from healthy volunteers was also collected by two methods to determine effect of centrifugation on test results as blood collected in Sierra Leone was not centrifuged. Collecting plasma without centrifugation only affected D-dimer values. Patients with Ebola virus disease had higher PT and APTT and D-dimer values than healthy humans with plasma collected in the same manner. Fibrinogen levels in patients with Ebola virus disease were normal or lower than values measured in healthy people. Clotting times and D-dimer levels were elevated during infection with Ebola virus but return to normal over time in patients that survived and therefore could be considered prognostic. Informative data can be obtained from plasma collected without centrifugation which could improve patient monitoring in hazardous environment
Haemostatic Changes in Five Patients Infected with Ebola Virus
Knowledge on haemostatic changes in humans infected with Ebola virus is limited due to safety concerns and access to patient samples. Ethical approval was obtained to collect plasma samples from patients in Sierra Leone infected with Ebola virus over time and samples were analysed for clotting time, fibrinogen, and D-dimer levels. Plasma from healthy volunteers was also collected by two methods to determine effect of centrifugation on test results as blood collected in Sierra Leone was not centrifuged. Collecting plasma without centrifugation only affected D-dimer values. Patients with Ebola virus disease had higher PT and APTT and D-dimer values than healthy humans with plasma collected in the same manner. Fibrinogen levels in patients with Ebola virus disease were normal or lower than values measured in healthy people. Clotting times and D-dimer levels were elevated during infection with Ebola virus but return to normal over time in patients that survived and therefore could be considered prognostic. Informative data can be obtained from plasma collected without centrifugation which could improve patient monitoring in hazardous environment
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of
bifundamentals, discovered in the context of the ABJM model, is shown to be
explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The
matrices that define it play the role of fuzzy Killing
spinors on the 2-sphere, out of which all spherical harmonics are constructed.
Starting from the quadratic fluctuation action around these solutions in the
mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping
a 2-sphere, including fermions. We obtain both the usual D4 action with an
unusual x-dependence on the sphere, as well as a twisted version in terms of
the usual x-dependence, and contrast our result with the Maldacena-Nunez case
of a D5 wrapping an S^2. The twisted and unwisted fields are related by the
same matrix .Comment: 50 pages, Latex; v2: references adde
Comparison of Aerosol Stability of Different Variants of Ebola Virus and Marburg Virus and Virulence of Aerosolised Ebola Virus in an Immune-Deficient Mouse
During outbreaks of virus diseases, many variants may appear, some of which may be of concern. Stability in an aerosol of several Ebola virus and Marburg virus variants was investigated. Studies were performed measuring aerosol survival using the Goldberg drum but no significant difference in biological decay rates between variants was observed. In addition, historic data on virulence in a murine model of different Ebola virus variants were compared to newly presented data for Ebola virus Kikwit in the A129 Interferon alpha/beta receptor-deficient mouse model. Ebola virus Kikwit was less virulent than Ebola virus Ecran in our mouse model. The mouse model may be a useful tool for studying differences in virulence associated with different variants whereas aerosol stability studies may not need to be conducted beyond the species level
Comparison of Aerosol Stability of Different Variants of Ebola Virus and Marburg Virus and Virulence of Aerosolised Ebola Virus in an Immune-Deficient Mouse
During outbreaks of virus diseases, many variants may appear, some of which may be of concern. Stability in an aerosol of several Ebola virus and Marburg virus variants was investigated. Studies were performed measuring aerosol survival using the Goldberg drum but no significant difference in biological decay rates between variants was observed. In addition, historic data on virulence in a murine model of different Ebola virus variants were compared to newly presented data for Ebola virus Kikwit in the A129 Interferon alpha/beta receptor-deficient mouse model. Ebola virus Kikwit was less virulent than Ebola virus Ecran in our mouse model. The mouse model may be a useful tool for studying differences in virulence associated with different variants whereas aerosol stability studies may not need to be conducted beyond the species level
CpG-DNA protects against a lethal orthopoxvirus infection in a murine model.
CpG-DNA has been described as a potent activator of the innate immune system, with potential to protect against infection caused by a range of pathogens in a non-specific manner. Here two classes of CpG-DNA (CpG-A and CpG-B) have been investigated for their abilities to protect mice from infection with an orthopoxvirus (vaccinia virus). Dosing with either CpG-A or B by the intraperitonal or intranasal route protected mice against a subsequent intranasal challenge with vaccinia virus. To our knowledge, this is the first time CpG-mediated protection has been demonstrated at the lung surface. The level of protection was greater when CpG-DNA was administered intranasally demonstrating a clear relationship between the route of CpG dosing and infection route. Treatment with CpG-B reduced viral titer in the lung by 10,000-fold at day 3 post-infection. The CC chemokines RANTES and MIP-1beta were elevated in the broncho-alveolar lavage from animals treated intranasally with CpG-B compared to untreated and intraperitoneally dosed controls, and it is possible that these chemokines play a role in the clearance of intranasally delivered vaccinia virus
Effectiveness of Four Disinfectants against Ebola Virus on Different Materials
The West Africa Ebola virus (EBOV) outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface. A decimal log reduction of viral titre of 4 is required for a disinfectant to be deemed effective and two of the disinfectants fulfilled this criteria under the conditions tested. One product, Ardrox 6092, was found to perform similarly to sodium hypochlorite, but as it does not have the corrosive properties of sodium hypochlorite, it could be an alternative disinfectant solution to be used for decontamination of EBOV on sensitive apparatus
Survival of Lassa Virus in Blood and Tissue Culture Media and in a Small Particle Aerosol
Knowledge of the survival and stability of a pathogen is important for understanding its risk, reducing its transmission, and establishing control measures. Lassa virus is endemic in West Africa, causes severe disease, and is an emerging pathogen of concern. Our study examined the survival of Lassa virus in blood and tissue culture media at two different temperatures. The stability of Lassa virus held within a small particle aerosol was also measured. In liquids, Lassa virus was found to decay more quickly at 30 °C compared to room temperature. Sealed samples protected from environmental desiccation were more stable than samples open to the environment. In a small particle aerosol, the decay rate of Lassa virus was determined at 2.69% per minute. This information can contribute to risk assessments and inform mitigation strategies in the event of an outbreak of Lassa virus
Survival and persistence of Nipah virus in blood and tissue culture media
ABSTRACTNipah virus (NiV) infection is a newly emerging zoonosis that causes severe disease in humans. Nipah virus is one of the lesser studied of the WHO emerging pathogens for which research is a priority. Survival and persistence data is important for risk management and understanding the hazard of the virus for laboratory and health care workers that may work with the virus and we present some initial findings on the survival of Nipah virus in blood and tissue culture media under different conditions. The titre of Nipah virus in blood or media at two different temperatures and exposed or sealed to the atmosphere was measured every day for three days and after a week. Nipah virus was very stable in blood in closed tubes held at room temperature with minimal decay over seven days. Decay was observed in all the other conditions tested and was more rapid in samples exposed to the atmosphere. Persistence data is useful for safety planning and risk management