2,320 research outputs found

    Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    Get PDF
    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described

    Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Get PDF
    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions

    Social Ranking Techniques for the Web

    Full text link
    The proliferation of social media has the potential for changing the structure and organization of the web. In the past, scientists have looked at the web as a large connected component to understand how the topology of hyperlinks correlates with the quality of information contained in the page and they proposed techniques to rank information contained in web pages. We argue that information from web pages and network data on social relationships can be combined to create a personalized and socially connected web. In this paper, we look at the web as a composition of two networks, one consisting of information in web pages and the other of personal data shared on social media web sites. Together, they allow us to analyze how social media tunnels the flow of information from person to person and how to use the structure of the social network to rank, deliver, and organize information specifically for each individual user. We validate our social ranking concepts through a ranking experiment conducted on web pages that users shared on Google Buzz and Twitter.Comment: 7 pages, ASONAM 201

    Voter model with non-Poissonian interevent intervals

    Full text link
    Recent analysis of social communications among humans has revealed that the interval between interactions for a pair of individuals and for an individual often follows a long-tail distribution. We investigate the effect of such a non-Poissonian nature of human behavior on dynamics of opinion formation. We use a variant of the voter model and numerically compare the time to consensus of all the voters with different distributions of interevent intervals and different networks. Compared with the exponential distribution of interevent intervals (i.e., the standard voter model), the power-law distribution of interevent intervals slows down consensus on the ring. This is because of the memory effect; in the power-law case, the expected time until the next update event on a link is large if the link has not had an update event for a long time. On the complete graph, the consensus time in the power-law case is close to that in the exponential case. Regular graphs bridge these two results such that the slowing down of the consensus in the power-law case as compared to the exponential case is less pronounced as the degree increases.Comment: 18 pages, 8 figure

    Energy metabolism in human pluripotent stem cells and their differentiated counterparts

    Get PDF
    Background: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). © 2011 Varum et al

    The Routing of Complex Contagion in Kleinberg's Small-World Networks

    Full text link
    In Kleinberg's small-world network model, strong ties are modeled as deterministic edges in the underlying base grid and weak ties are modeled as random edges connecting remote nodes. The probability of connecting a node uu with node vv through a weak tie is proportional to 1/∣uv∣α1/|uv|^\alpha, where ∣uv∣|uv| is the grid distance between uu and vv and α≥0\alpha\ge 0 is the parameter of the model. Complex contagion refers to the propagation mechanism in a network where each node is activated only after k≥2k \ge 2 neighbors of the node are activated. In this paper, we propose the concept of routing of complex contagion (or complex routing), where we can activate one node at one time step with the goal of activating the targeted node in the end. We consider decentralized routing scheme where only the weak ties from the activated nodes are revealed. We study the routing time of complex contagion and compare the result with simple routing and complex diffusion (the diffusion of complex contagion, where all nodes that could be activated are activated immediately in the same step with the goal of activating all nodes in the end). We show that for decentralized complex routing, the routing time is lower bounded by a polynomial in nn (the number of nodes in the network) for all range of α\alpha both in expectation and with high probability (in particular, Ω(n1α+2)\Omega(n^{\frac{1}{\alpha+2}}) for α≤2\alpha \le 2 and Ω(nα2(α+2))\Omega(n^{\frac{\alpha}{2(\alpha+2)}}) for α>2\alpha > 2 in expectation), while the routing time of simple contagion has polylogarithmic upper bound when α=2\alpha = 2. Our results indicate that complex routing is harder than complex diffusion and the routing time of complex contagion differs exponentially compared to simple contagion at sweetspot.Comment: Conference version will appear in COCOON 201

    Multiple agency perspective, family control, and private information abuse in an emerging economy

    Get PDF
    Using a comprehensive sample of listed companies in Hong Kong this paper investigates how family control affects private information abuses and firm performance in emerging economies. We combine research on stock market microstructure with more recent studies of multiple agency perspectives and argue that family ownership and control over the board increases the risk of private information abuse. This, in turn, has a negative impact on stock market performance. Family control is associated with an incentive to distort information disclosure to minority shareholders and obtain private benefits of control. However, the multiple agency roles of controlling families may have different governance properties in terms of investors’ perceptions of private information abuse. These findings contribute to our understanding of the conflicting evidence on the governance role of family control within a multiple agency perspectiv

    Quasiparticle relaxation dynamics in cuprates and lifetimes of low-energy states: Femtosecond data from underdoped to overdoped YBCO and mercury compounds

    Full text link
    We show that low-energy spectral features in the cuprates can be separated into different components by the measurement of the recombination dynamics of different low-energy excitations in real-time using femtosecond laser spectroscopy. Quasiparticle (QP) recombination across the gap and intra-gap localized state relaxation processes exhibit qualitatively different time- and temperature-dependences. The relaxation measurements also show the existence of two distinct coexisting energy gaps near optimum doping and in the overdoped region, one more or less temperature independent (which exists above and below Tc) and one which closes at Tc in a mean-field like fashion. Thus systematic studies of QP recombination as a function of doping and temperature suggest that the ground state of the cuprates is a mixed Boson-Fermion system with localised states present over the entire region of the phase diagram.Comment: 4 pages, acepted for publication in Physica C, invited paper given at M2S, Feb. 20 - 25, 2000, Houston, US

    Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Get PDF
    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking
    • …
    corecore