24 research outputs found
Dual Inhibition of Focal Adhesion Kinase and Epidermal Growth Factor Receptor Pathways Cooperatively Induces Death Receptor-mediated Apoptosis in Human Breast Cancer Cells
The focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) are protein-tyrosine kinases that are overexpressed and activated in human breast cancer. To determine the role of EGFR and FAK survival signaling in breast cancer, EGFR was stably overexpressed in BT474 breast cancer cells, and each signaling pathway was specifically targeted for inhibition. FAK and EGFR constitutively co-immunoprecipitated in EGFR-overexpressing BT474 cells. In low EGFR-expressing BT474-pcDNA3 vector control cells, inhibition of FAK by the FAK C-terminal domain caused detachment and apoptosis via pathways involving activation of caspase-3 and -8, cleavage of poly(ADP-ribose) polymerase, and caspase-3-dependent degradation of AKT. This apoptosis could be rescued by the dominant-negative Fas-associated death domain, indicating involvement of the death receptor pathway. EGFR overexpression did not inhibit detachment induced by the FAK C-terminal domain, but did suppress apoptosis, activating AKT and ERK1/2 survival pathways and inhibiting cleavage of FAK, caspase-3 and -8, and poly(ADP-ribose) polymerase. Furthermore, this protective effect of EGFR signaling was reversed by EGFR kinase inhibition with AG1478. In addition, inhibition of FAK and EGFR in another breast cancer cell line (BT20) endogenously overexpressing these kinases also induced apoptosis via the same mechanism as in the EGFR-overexpressing BT474 cells. The results of this study indicate that dual inhibition of FAK and EGFR signaling pathways can cooperatively enhance apoptosis in breast cancers
HER4 D-Box Sequences Regulate Mitotic Progression and Degradation of the Nuclear HER4 Cleavage Product s80HER4
Heregulin-mediated activation of HER4 initiates receptor cleavage (releasing an 80-kDa HER4 intracellular domain, s80HER4, containing nuclear localization sequences) and results in G2/M delay by unknown signaling mechanisms. We report herein that s80HER4 contains a functional cyclin B-like sequence known as a D-box, which targets proteins for degradation by APC/C, a multisubunit ubiquitin ligase. s80HER4 ubiquitination and ptoteosomal degradation occurred during mitosis but not during S-phase. Inhibition of an APC subunit (APC2) using siRNA knock-down impaired s80HER4 degradation. Mutation of the s80HER4 D-box sequence stabilized s80HER4 during mitosis, and s80HER4-dependent growth inhibition via G2/M delay was significantly greater with the D-box mutant. Polyomvirus middle-T antigen-transformed HC11 cells expressing s80HER4 resulted in smaller, less proliferative, more differentiated tumors in vivo than those expressing kinase-dead s80HER4 or the empty vector. Cells expressing s80HER4 with a disrupted D-box did not form tumors, instead forming differentiated ductal structures. These results suggest that cell cycle-dependent degradation of s80HER4 limits its growth inhibitory action, and stabilization of s80HER4 enhances tumor suppression, thus providing a link between HER4-mediated growth inhibition and cell cycle control
STRUCTURE THEOREMS FOR CONSTANT MEAN-CURVATURE SURFACES BOUNDED BY A PLANAR CURVE
Introduction A circle C in R 3 is the boundary of two spherical caps of constant mean curvature H for any positive number H, which is at most the radius of C. It is natural to ask whether spherical caps are the only possible examples. Some examples of constant mean curvature immersed tori by Wente [7] indicate that there are compact genus-one immersed constant mean curvature surfaces with boundary C that are approximated by compact domains in Wente tori; however, this has not been proved. Still one has the conjecture: Conjecture 1 A compact constant mean curvature surface bounded by a circle is a spherical cap if either of the following conditions hold: 1. The surface has genus 0 and is immersed; 2. The surface is embedded. If M is a compact embedded constant mean curvature surface in R 3 with boundary C<F1