379 research outputs found

    Horizontal transmission of Escherichia coli O157:H7 during cattle housing, survival kinetics in feces and water of Escherichia coli O157:H7 and characterisation of E. coli O157:H7 isolates from cattle faeces and a feedlot environment

    Get PDF
    End of project reportTeagasc acknowledges with gratitude the support of European Union Structural Funds (EAGGF) in financing this research projectEscherichia coli O157:H7 can cause severe illness and in some cases leading to death. Cattle are the main reservoir with transmission to humans occurring through contamination of food or the environment. Improved understanding of the survival and transmission and survival of E. coli O157:H7 on the farm is essential for developing future controls of this pathogen. This study showed that transmission of E. coli O157:H7 can occur rapidly in groups of housed cattle, with contamination of the pens and hides occurring in 24 hrs. The inoculation dose for cattle is lower than previously reported. Ingestion of bacteria from the hide through social grooming is important for pathogen transmission in housed cattle along with faecal contamination of the environment. Sampling hide will improve the estimation of prevalence of E. coli O157:H7 in pens

    Microevolutionary distribution of isogenicity in a self-fertilizing fish (Kryptolebias marmoratus) in the Florida Keys.

    Get PDF
    The mangrove rivulus Kryptolebias marmoratus and a closely related species are the world's only vertebrates that routinely self-fertilize. Such uniqueness presents a model for understanding why this reproductive mode, common in plants and invertebrates, is so rare in vertebrates. A survey of 32 highly polymorphic loci in >200 specimens of mangrove rivulus from multiple locales in the Florida Keys, USA, revealed extensive population-genetic structure on microspatial and micro-temporal scales. Observed heterozygosities were severely constrained, as expected for a hermaphroditic species with a mixed-mating system and low rates of outcrossing. Despite the pronounced population structure and the implied restrictions on effective gene flow, isogenicity (genetic identity across individuals) within and among local inbred populations was surprisingly low even after factoring out probable de novo mutations. Results indicate that neither frequent bottlenecks nor directional genetic adaptation to local environmental conditions were the primary driving forces impacting multilocus population-genetic architecture in this self-fertilizing vertebrate species. On the other hand, a high diversity of isogenic lineages within relatively small and isolated local populations is consistent with the action of diversifying selection driven by the extreme spatio-temporal environmental variability that is characteristic of mangrove habitats

    Recognition is not parsing — SPPF-style parsing from cubic recognisers

    Get PDF
    AbstractIn their recogniser forms, the Earley and RIGLR algorithms for testing whether a string can be derived from a grammar are worst-case cubic on general context free grammars (CFG). Earley gave an outline of a method for turning his recognisers into parsers, but it turns out that this method is incorrect. Tomita’s GLR parser returns a shared packed parse forest (SPPF) representation of all derivations of a given string from a given CFG but is worst-case unbounded polynomial order. The parser version of the RIGLR algorithm constructs Tomita-style SPPFs and thus is also worst-case unbounded polynomial order. We have given a modified worst-case cubic GLR algorithm, that, for any string and any CFG, returns a binarised SPPF representation of all possible derivations of a given string. In this paper we apply similar techniques to develop worst-case cubic Earley and RIGLR parsing algorithms

    Effect of floor type on the performance, physiological and behavioural responses of finishing beef steers

    Get PDF
    peer-reviewedBackground:The study objective was to investigate the effect of bare concrete slats (Control), two types of mats [(Easyfix mats (mat 1) and Irish Custom Extruder mats (mat 2)] fitted on top of concrete slats, and wood-chip to simulate deep bedding (wood-chip placed on top of a plastic membrane overlying the concrete slats) on performance, physiological and behavioral responses of finishing beef steers. One-hundred and forty-four finishing steers (503 kg; standard deviation 51.8 kg) were randomly assigned according to their breed (124 Continental cross and 20 Holstein–Friesian) and body weight to one of four treatments for 148 days. All steers were subjected to the same weighing, blood sampling (jugular venipuncture), dirt and hoof scoring pre study (day 0) and on days 23, 45, 65, 86, 107, 128 and 148 of the study. Cameras were fitted over each pen for 72 h recording over five periods and subsequent 10 min sampling scans were analysed. Results: Live weight gain and carcass characteristics were similar among treatments. The number of lesions on the hooves of the animals was greater (P < 0.05) on mats 1 and 2 and wood-chip treatments compared with the animals on the slats. Dirt scores were similar for the mat and slat treatments while the wood-chip treatment had greater dirt scores. Animals housed on either slats or wood-chip had similar lying times. The percent of animals lying was greater for animals housed on mat 1 and mat 2 compared with those housed on concrete slats and wood chips. Physiological variables showed no significant difference among treatments. Conclusions: In this exploratory study, the performance or welfare of steers was not adversely affected by slats, differing mat types or wood-chip as underfoot material

    Genetic Subdivision and Variation in Selfing Rates Among Central American Populations of the Mangrove Rivulus, Kryptolebias marmoratus.

    Get PDF
    We used 32 polymorphic microsatellite loci to investigate how a mixed-mating system affects population genetic structure in Central American populations (N = 243 individuals) of the killifish Kryptolebias marmoratus (mangrove rivulus), 1 of 2 of the world's only known self-fertilizing vertebrates. Results were also compared with previous microsatellite surveys of Floridian populations of this species. For several populations in Belize and Honduras, population structure and genetic differentiation were pronounced and higher than in Florida, even though the opposite trend was expected because populations in the latter region were presumably smaller and highly selfing. The deduced frequency of selfing (s) ranged from s = 0.39-0.99 across geographic locales in Central America. This heterogeneity in selfing rates was in stark contrast to Florida, where s &gt; 0.9. The frequency of outcrossing in a population (t = 1 - s) was tenuously correlated with local frequencies of males, suggesting that males are one of many factors influencing outcrossing. Observed distributions of individual heterozygosity showed good agreement with expected distributions under an equilibrium mixed-mating model, indicating that rates of selfing remained relatively constant over many generations. Overall, our results demonstrate the profound consequences of a mixed-mating system for the genetic architecture of a hermaphroditic vertebrate

    Developmental Functions of miR156-Regulated \u3cem\u3eSQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)\u3c/em\u3e Genes in \u3cem\u3eArabidopsis thaliana\u3c/em\u3e

    Get PDF
    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development—the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition—are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development

    Out to sea: ocean currents and patterns of asymmetric gene flow in an intertidal fish species

    Get PDF
    Passive dispersal via wind or ocean currents can drive asymmetric gene flow, which influences patterns of genetic variation and the capacity of populations to evolve in response to environmental change. The mangrove rivulus fish (Kryptolebias marmoratus), hereafter “rivulus,” is an intertidal fish species restricted to the highly fragmented New World mangrove forests of Central America, the Caribbean, the Bahamas, and Florida. Mangrove patches are biological islands with dramatic differences in both abiotic and biotic conditions compared to adjacent habitat. Over 1,000 individual rivulus across 17 populations throughout its range were genotyped at 32 highly polymorphic microsatellites. Range-wide population genetic structure was evaluated with five complementary approaches that found eight distinct population clusters. However, an analysis of molecular variance indicated significant population genetic structure among regions, populations within regions, sampling locations within populations, and individuals within sampling locations, indicating that rivulus has both broad- and fine-scale genetic differentiation. Integrating range-wide genetic data with biophysical modeling based on 10 years of ocean current data showed that ocean currents and the distance between populations over water drive gene flow patterns on broad scales. Directional migration estimates suggested some significant asymmetries in gene flow that also were mediated by ocean currents and distance. Specifically, populations in the center of the range (Florida Keys) were identified as sinks that received migrants (and alleles) from other populations but failed to export individuals. These populations thus harbor genetic variation, perhaps even from extirpated populations across the range, but ocean currents and complex arrangements of landmasses might prevent the distribution of that genetic variation elsewhere. Hence, the inherent asymmetry of ocean currents shown to impact both genetic differentiation and directional migration rates may be responsible for the complex distribution of genetic variation across the range and observed patterns of metapopulation structure

    Sex-Specific Differences in Shoaling Affect Parasite Transmission in Guppies

    Get PDF
    Background: Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts. Methodology/Principal Findings:Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection. Conclusions/Significance: Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species
    • …
    corecore