41 research outputs found

    From Beyond the Stars: Innovation and Inspiration in Meiji Japanese Art, 1868-1912

    Get PDF
    Design by Tom Wagner. Photography by the Kruizenga Art Museum, Tom Wagner, and Curatorial Assistance/WorldBridge Art, Inc. Produced by Storming the Castle Pictures (StCP) for the Kruizenga Art Museum as a catalogue for the exhibition, From Beyond the Stars, August 29 - December 16, 2017. Photographs, text and design copyright 2017 Hope College and Tom Wagner, no reproduction or use of any material, in whole or in part, without the written permission of Hope College.https://digitalcommons.hope.edu/kam_catalogs/1001/thumbnail.jp

    Foundational economy and foundational politics

    Get PDF
    Non

    Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Get PDF
    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas)

    Cumulative effects of bullying and racial discrimination on adolescent health in Australia

    Get PDF
    This study examined how cumulative exposure to racial discrimination and bullying victimization influences the health of Australian adolescents (n=2802) aged 10-11 years (19.3% visible ethnic minorities (non-White, non-Indigenous); 2.6% Indigenous) using data from 3 waves (2010-2014) of the nationally representative Longitudinal Study of Australian Children (LSAC). Cumulative exposure to racial discrimination and bullying victimization had incremental negative effects on socioemotional difficulties. Higher accumulated exposure to both stressors across time was associated with increased BMI z-scores, and risk of overweight/obesity. Studies that examine exposure to single risk factors such as bullying victimization or racial discrimination at 1 time point only are likely to miss key determinants of health for adolescents from stigmatized racial/ethnic backgrounds and under-estimate their stressor burden

    The Woody Guthrie Centennial Bibliography

    Get PDF
    This bibliography updates two extensive works designed to include comprehensively all significant works by and about Woody Guthrie. Richard A. Reuss published A Woody Guthrie Bibliography, 1912–1967 in 1968 and Jeffrey N. Gatten\u27s article “Woody Guthrie: A Bibliographic Update, 1968–1986” appeared in 1988. With this current article, researchers need only utilize these three bibliographies to identify all English-language items of relevance related to, or written by, Guthrie

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Japanese art and design

    No full text
    223 p. : il.; 28 cm

    The Toshiba Gallery: Japanese Art and Design

    No full text

    The isothiocyanates of rape and papaya

    No full text
    Abstract Not Available
    corecore