6 research outputs found

    Subcycle Quantum Electrodynamics

    Full text link
    Besides their stunning physical properties which are unmatched in a classical world, squeezed states of electromagnetic radiation bear advanced application potentials in quantum information systems and precision metrology, including gravitational wave detectors with unprecedented sensitivity. Since the first experiments on such nonclassical light, quantum analysis has been based on homodyning techniques and photon correlation measurements. These methods require a well-defined carrier frequency and photons contained in a quantum state need to be absorbed or amplified. They currently function in the visible to near-infrared and microwave spectral ranges. Quantum nondemolition experiments may be performed at the expense of excess fluctuations in another quadrature. Here we generate mid-infrared time-locked patterns of squeezed vacuum noise. After propagation through free space, the quantum fluctuations of the electric field are studied in the time domain by electro-optic sampling with few-femtosecond laser pulses. We directly compare the local noise amplitude to the level of bare vacuum fluctuations. This nonlinear approach operates off resonance without absorption or amplification of the field that is investigated. Subcycle intervals with noise level significantly below the pure quantum vacuum are found. Enhanced fluctuations in adjacent time segments manifest generation of highly correlated quantum radiation as a consequence of the uncertainty principle. Together with efforts in the far infrared, this work opens a window to the elementary quantum dynamics of light and matter in an energy range at the boundary between vacuum and thermal background conditions.Comment: 19 pages, 4 figure

    Coherent and Squeezed States: Introductory Review of Basic Notions, Properties, and Generalizations

    No full text
    A short review of the main properties of coherent and squeezed states is given in introductory form. The efforts are addressed to clarify concepts and notions, including some passages of the history of science, with the aim of facilitating the subject for nonspecialists. In this sense, the present work is intended to be complementary to other papers of the same nature and subject in current circulation.Comment: 50 pages, misprints corrected, some new references included. To appear in "Integrability, Supersymmetry and Coherent States. A Volume in Honor of Professor Veronique Hussin
    corecore