3,697 research outputs found
Drug wastage among the elderly living in old aged homes in Hong Kong
The extend of drug wastage among elderly living in old aged homes was never investigated. Upon the completion of the previous study on pharmaceutical services provided to elderly living in old aged homes, the amount of drugs wasted from 3,020 residents in one of the delegated pharmacies over a 4-month period were counted and their costs were calculated. The total cost of wasted drugs amounted to be HKD26,872 (27.7%), followed by respiratory drugs of HKD22,965 (23.7%). The results showed that for health institutes dispensing prescriptions of long duration to the elderly could lead to considerable amount of drug wastage and this issue should be addressed.link_to_subscribed_fulltex
The pharmaceutical services to the elderly in the old aged homes in Hong Kong: a scope exercise
Various models of pharmaceutical services have been provided by pharmacists to old aged home residents, however, these models have never been summarised and compared. The aim of this scoping exercise is to identify different kinds of pharmaceutical services currently available to the old aged home residents, by means of systemic literature review, qualitative in-depth interviews with service providers in order to understand their models and qualitative semi-structured interviews with non-pharmaceutical service users in an attempt to investigate reasons why some homes do not subscribe to these services. The results showed that none of the pharmaceutical services currently available can uproot the causes of medication errors, and there is a need to elaborate the roles of pharmacists in a primary care setting.link_to_subscribed_fulltex
APPL1 antagonises Tribble 3 in regulating hepatic glucose production through fine-tuning insulin-evoked Akt signalling
Poster Session 2: Genes & Signaling - abstract no. 46: Endocrinologypublished_or_final_versionThe 15th Annual Research Conference of the Department of Medicine, The University of Hong Kong, Hong Kong, 16 January 2010. In Hong Kong Medical Journal, 2010, v. 16, suppl. 1, p. 15, abstract no. 1
Warped Radion Dark Matter
Warped scenarios offer an appealing solution to the hierarchy problem. We
consider a non-trivial deformation of the basic Randall-Sundrum framework that
has a KK-parity symmetry. This leads to a stable particle beyond the Standard
Model, that is generically expected to be the first KK-parity odd excitation of
the radion field. We consider the viability of the KK-radion as a DM candidate
in the context of thermal and non-thermal production in the early universe. In
the thermal case, the KK-radion can account for the observed DM density when
the radion decay constant is in the natural multi-TeV range. We also explore
the effects of coannihilations with the first KK excitation of the RH top, as
well as the effects of radion-Higgs mixing, which imply mixing between the
KK-radion and a KK-Higgs (both being KK-parity odd). The non-thermal scenario,
with a high radion decay constant, can also lead to a viable scenario provided
the reheat temperature and the radion decay constant take appropriate values,
although the reheat temperature should not be much higher than the TeV scale.
Direct detection is found to be feasible if the DM has a small (KK-parity odd)
Higgs admixture. Indirect detection via a photon signal from the galactic
center is an interesting possibility, while the positron and neutrino fluxes
from KK-radion annihilations are expected to be rather small. Colliders can
probe characteristic aspects of the DM sector of warped scenarios with
KK-parity, such as the degeneracy between the radion and the KK-radion (DM)
modes.Comment: 43 pages, 16 figures; added reference
Maverick dark matter at colliders
Assuming that dark matter is a weakly interacting massive particle (WIMP)
species X produced in the early Universe as a cold thermal relic, we study the
collider signal of pp or ppbar -> XXbar + jets and its distinguishability from
standard-model background processes associated with jets and missing energy. We
assume that the WIMP is the sole particle related to dark matter within reach
of the LHC--a "maverick" particle--and that it couples to quarks through a
higher dimensional contact interaction. We simulate the WIMP final-state signal
XXbar + jet and dominant standard-model (SM) background processes and find that
the dark-matter production process results in higher energies for the colored
final state partons than do the standard-model background processes, resulting
in more QCD radiation and a higher jet multiplicity. As a consequence, the
detectable signature of maverick dark matter is an excess over standard-model
expectations of events consisting of large missing transverse energy, together
with large leading jet transverse momentum and scalar sum of the transverse
momenta of the jets. Existing Tevatron data and forthcoming LHC data can
constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure
Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC
Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients
Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype.
3D time series analysis of cell shape using Laplacian approaches
Background:
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.
Results:
We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.
Conclusions:
The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations
Breakdown of the adiabatic limit in low dimensional gapless systems
It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version
- …
