68 research outputs found

    Dimensionality dependence of the wave function statistics at the Anderson transition

    Get PDF
    The statistics of critical wave functions at the Anderson transition in three and four dimensions are studied numerically. The distribution of the inverse participation ratios (IPR) PqP_q is shown to acquire a scale-invariant form in the limit of large system size. Multifractality spectra governing the scaling of the ensemble-averaged IPRs are determined. Conjectures concerning the IPR statistics and the multifractality at the Anderson transition in a high spatial dimensionality are formulated.Comment: 4 pages, 4 figure

    Quasiclassical magnetotransport in a random array of antidots

    Get PDF
    We study theoretically the magnetoresistance ρxx(B)\rho_{xx}(B) of a two-dimensional electron gas scattered by a random ensemble of impenetrable discs in the presence of a long-range correlated random potential. We believe that this model describes a high-mobility semiconductor heterostructure with a random array of antidots. We show that the interplay of scattering by the two types of disorder generates new behavior of ρxx(B)\rho_{xx}(B) which is absent for only one kind of disorder. We demonstrate that even a weak long-range disorder becomes important with increasing BB. In particular, although ρxx(B)\rho_{xx}(B) vanishes in the limit of large BB when only one type of disorder is present, we show that it keeps growing with increasing BB in the antidot array in the presence of smooth disorder. The reversal of the behavior of ρxx(B)\rho_{xx}(B) is due to a mutual destruction of the quasiclassical localization induced by a strong magnetic field: specifically, the adiabatic localization in the long-range Gaussian disorder is washed out by the scattering on hard discs, whereas the adiabatic drift and related percolation of cyclotron orbits destroys the localization in the dilute system of hard discs. For intermediate magnetic fields in a dilute antidot array, we show the existence of a strong negative magnetoresistance, which leads to a nonmonotonic dependence of ρxx(B)\rho_{xx}(B).Comment: 21 pages, 13 figure

    Magnetotransport in inhomogeneous magnetic fields

    Full text link
    Quantum transport in inhomogeneous magnetic fields is investigated numerically in two-dimensional systems using the equation of motion method. In particular, the diffusion of electrons in random magnetic fields in the presence of additional weak uniform magnetic fields is examined. It is found that the conductivity is strongly suppressed by the additional uniform magnetic field and saturates when the uniform magnetic field becomes on the order of the fluctuation of the random magnetic field. The value of the conductivity at this saturation is found to be insensitive to the magnitude of the fluctuation of the random field. The effect of random potential on the magnetoconductance is also discussed.Comment: 5 pages, 5 figure

    Fluctuation of the Correlation Dimension and the Inverse Participation Number at the Anderson Transition

    Full text link
    The distribution of the correlation dimension in a power law band random matrix model having critical, i.e. multifractal, eigenstates is numerically investigated. It is shown that their probability distribution function has a fixed point as the system size is varied exactly at a value obtained from the scaling properties of the typical value of the inverse participation number. Therefore the state-to-state fluctuation of the correlation dimension is tightly linked to the scaling properties of the joint probability distribution of the eigenstates.Comment: 4 pages, 5 figure

    Multifractality at the spin quantum Hall transition

    Get PDF
    Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index η\eta characterizing the decay of wave function correlations is equal to 1/4, at variance with the r1/2r^{-1/2} decay of the diffusion propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close-to-parabolic, Δqq(1q)/8\Delta_q\simeq q(1-q)/8 and Xqq(3q)/4X_q\simeq q(3-q)/4.Comment: 4 pages, 3 figure

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for α1\alpha\ll 1 the Drude theory applies, at α1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near ν=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    Multifractality of wavefunctions at the quantum Hall transition revisited

    Get PDF
    We investigate numerically the statistics of wavefunction amplitudes ψ(r)\psi({\bf r}) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of ψ2|\psi|^2 is log-normal, so that the multifractal spectrum f(α)f(\alpha) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.Comment: 4 pages Late

    Fluctuations and scaling of inverse participation ratios in random binary resonant composites

    Full text link
    We study the statistics of local field distribution solved by the Green's-function formalism (GFF) [Y. Gu et al., Phys. Rev. B {\bf 59} 12847 (1999)] in the disordered binary resonant composites. For a percolating network, the inverse participation ratios (IPR) with q=2q=2 are illustrated, as well as the typical local field distributions of localized and extended states. Numerical calculations indicate that for a definite fraction pp the distribution function of IPR PqP_q has a scale invariant form. It is also shown the scaling behavior of the ensemble averaged described by the fractal dimension DqD_q. To relate the eigenvectors correlations to resonance level statistics, the axial symmetry between D2D_2 and the spectral compressibility χ\chi is obtained.Comment: 7 pages, 6 figures, accepted by Physical Review

    Density of states for almost diagonal random matrices

    Full text link
    We study the density of states (DOS) for disordered systems whose spectral statistics can be described by a Gaussian ensemble of almost diagonal Hermitian random matrices. The matrices have independent random entries Hij H_{i \geq j} with small off-diagonal elements: <Hii2>1 \ll <|H_{ii}|^{2} > \sim 1 . Using the recently suggested method of a {\it virial expansion in the number of interacting energy levels} (Journ.Phys.A {\bf 36}, 8265), we calculate the leading correction to the Poissonian DOS in the cases of the Gaussian Orthogonal and Unitary Ensembles. We apply the general formula to the critical power-law banded random matrices and the unitary Moshe-Neuberger-Shapiro model and compare DOS of these models.Comment: submitted to Phys. Rev.
    corecore