2,483 research outputs found

    Guidance and Control in a Josephson Charge Qubit

    Get PDF
    In this paper we propose a control strategy based on a classical guidance law and consider its use for an example system: a Josephson charge qubit. We demonstrate how the guidance law can be used to attain a desired qubit state using the standard qubit control fields.Comment: 9 pages, 5 figure

    Signatures of the collapse and revival of a spin Schr\"{o}dinger cat state in a continuously monitored field mode

    Full text link
    We study the effects of continuous measurement of the field mode during the collapse and revival of spin Schr\"{o}dinger cat states in the Tavis-Cummings model of N qubits (two-level quantum systems) coupled to a field mode. We show that a compromise between relatively weak and relatively strong continuous measurement will not completely destroy the collapse and revival dynamics while still providing enough signal-to-noise resolution to identify the signatures of the process in the measurement record. This type of measurement would in principle allow the verification of the occurrence of the collapse and revival of a spin Schr\"{o}dinger cat state.Comment: 5 pages, 2 figure

    Nonlinear backreaction in a quantum mechanical SQUID

    Get PDF
    In this paper we discuss the coupling between a quantum mechanical superconducting quantum interference device (SQUID) and an applied static magnetic field. We demonstrate that the backreaction of a SQUID on the applied field can interfere with the ability to bias the SQUID at values of the static (DC) magnetic flux at, or near to, transitions in the quantum mechanical SQUID.Comment: 9 pages, to be published in Phys. Rev.

    Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Get PDF
    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant

    Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    Get PDF
    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer

    Cool for Cats

    Get PDF
    The iconic Schr\"odinger's cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schr\"odinger's cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schr\"odinger's cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schr\"odinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary informatio
    corecore