63,078 research outputs found

    Ordering dynamics of the driven lattice gas model

    Full text link
    The evolution of a two-dimensional driven lattice-gas model is studied on an L_x X L_y lattice. Scaling arguments and extensive numerical simulations are used to show that starting from random initial configuration the model evolves via two stages: (a) an early stage in which alternating stripes of particles and vacancies are formed along the direction y of the driving field, and (b) a stripe coarsening stage, in which the number of stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus, depending on this parameter, the resulting state could be either single or multi striped. In the second, stripe coarsening stage, the coarsening time is found to be proportional to L_y, becoming infinitely long in the thermodynamic limit. This implies that the multi striped state is thermodynamically stable. The results put previous studies of the model in a more general framework

    Marginalising instrument systematics in HST WFC3 transit lightcurves

    Get PDF
    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7μ\mum probe primarily the H2_2O absorption band at 1.4μ\mum, and has provided low resolution transmission spectra for a wide range of exoplanets. We present the application of marginalisation based on Gibson (2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to better determine important transit parameters such as Rp_p/R∗_*, important for accurate detections of H2_2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion (AIC). We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalised transit parameters for both the band-integrated, and spectroscopic lightcurves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time, as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts δλ(λ)\delta_\lambda(\lambda), best describe the associated systematic in the spectroscopic lightcurves for most targets, while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalisation allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each dataset, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap

    Factorised steady states for multi-species mass transfer models

    Full text link
    A general class of mass transport models with Q species of conserved mass is considered. The models are defined on a lattice with parallel discrete time update rules. For one-dimensional, totally asymmetric dynamics we derive necessary and sufficient conditions on the mass transfer dynamics under which the steady state factorises. We generalise the model to mass transfer on arbitrary lattices and present sufficient conditions for factorisation. In both cases, explicit results for random sequential update and continuous time limits are given.Comment: 11 page

    Negations in syllogistic reasoning: Evidence for a heuristic–analytic conflict

    Get PDF
    An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails

    The Effect of Weak Interactions on the Ultra-Relativistic Bose-Einstein Condensation Temperature

    Full text link
    We calculate the ultra-relativistic Bose-Einstein condensation temperature of a complex scalar field with weak lambda Phi^4 interaction. We show that at high temperature and finite density we can use dimensional reduction to produce an effective three-dimensional theory which then requires non-perturbative analysis. For simplicity and ease of implementation we illustrate this process with the linear delta expansion.Comment: Latex2e, 12 pages, three eps figures, replacement with additional discussion and extra figur

    Condensation Transitions in Two Species Zero-Range Process

    Full text link
    We study condensation transitions in the steady state of a zero-range process with two species of particles. The steady state is exactly soluble -- it is given by a factorised form provided the dynamics satisfy certain constraints -- and we exploit this to derive the phase diagram for a quite general choice of dynamics. This phase diagram contains a variety of new mechanisms of condensate formation, and a novel phase in which the condensate of one of the particle species is sustained by a `weak' condensate of particles of the other species. We also demonstrate how a single particle of one of the species (which plays the role of a defect particle) can induce Bose-Einstein condensation above a critical density of particles of the other species.Comment: 17 pages, 4 Postscript figure
    • …
    corecore