445 research outputs found

    The associations between autistic traits and disordered eating/drive for muscularity are independent of anxiety and depression in females but not males

    Get PDF
    Previous research has shown a positive correlation between autistic traits and eating disorder symptoms, and this relationship appears to be independent of co-occurring mental health status. The current study followed a pre-registered analysis plan with the aim to investigate a previously unconsidered factor in the relationship between autistic traits and disorders of eating and body image: the drive for muscularity. Participants (N = 1068) completed the Autism Spectrum Quotient (AQ), Hospital Anxiety and Depression Scale (HADS), Eating Attitudes Test-26 (EAT-26) and Drive for Muscularity Scale (DMS). Positive correlations between AQ and EAT-26 and AQ and DMS were observed. In females, AQ remained significantly correlated with EAT-26 and DMS when controlling for co-occurring anxiety and depression symptoms, but this was not the case in males. These findings demonstrate the moderating role of sex, and the need to consider autistic traits in individuals diagnosed with, or at a heightened risk for, disorders of eating and body image

    Holographic RG Flows and Universal Structures on the Coulomb Branch of N=2 Supersymmetric Large n Gauge Theory

    Full text link
    We report on our results of D3-brane probing a large class of generalised type IIB supergravity solutions presented very recently in the literature. The structure of the solutions is controlled by a single non-linear differential equation. These solutions correspond to renormalisation group flows from pure N=4 supersymmetric gauge theory to an N=2 gauge theory with a massive adjoint scalar. The gauge group is SU(n) with n large. After presenting the general result, we focus on one of the new solutions, solving for the specific coordinates needed to display the explicit metric on the moduli space. We obtain an appropriately holomorphic result for the coupling. We look for the singular locus, and interestingly, the final result again manifests itself in terms of a square root branch cut on the complex plane, as previously found for a set of solutions for which the details are very different. This, together with the existence of the single simple non-linear differential equation, is further evidence in support of an earlier suggestion that there is a very simple model --perhaps a matrix model with relation to the Calogero-Moser integrable system-- underlying this gauge theory physics.Comment: 14 pages, LaTeX, 1 figur

    Stability of the non-extremal enhancon solution I: perturbation equations

    Get PDF
    We consider the stability of the two branches of non-extremal enhancon solutions. We argue that one would expect a transition between the two branches at some value of the non-extremality, which should manifest itself in some instability. We study small perturbations of these solutions, constructing a sufficiently general ansatz for linearised perturbations of the non-extremal solutions, and show that the linearised equations are consistent. We show that the simplest kind of perturbation does not lead to any instability. We reduce the problem of studying the more general spherically symmetric perturbation to solving a set of three coupled second-order differential equations.Comment: 20 pages, 1 figure, references added, typos fixed, version to appear in PR

    Flowing with Eight Supersymmetries in M-Theory and F-theory

    Get PDF
    We consider holographic RG flow solutions with eight supersymmetries and study the geometry transverse to the brane. For both M2-branes and for D3-branes in F-theory this leads to an eight-manifold with only a four-form flux. In both settings there is a natural four-dimensional hyper-Kahler slice that appears on the Coulomb branch. In the IIB theory this hyper-Kahler manifold encodes the Seiberg-Witten coupling over the Coulomb branch of a U(1) probe theory. We focus primarily upon a new flow solution in M-theory. This solution is first obtained using gauged supergravity and then lifted to eleven dimensions. In this new solution, the brane probes have an Eguchi-Hanson moduli space with the M2-branes spread over the non-trivial 2-sphere. It is also shown that the new solution is valid for a class of orbifold theories. We discuss how the hyper-Kahler structure on the slice extends to some form of G-structure in the eight-manifold, and describe how this can be computed.Comment: 29 pages, 1 figure, harvma

    The symmetric-Toeplitz linear system problem in parallel

    Full text link
    [EN] Many algorithms exist that exploit the special structure of Toeplitz matrices for solving linear systems. Nevertheless, these algorithms are difficult to parallelize due to its lower computational cost and the great dependency of the operations involved that produces a great communication cost. The foundation of the parallel algorithm presented in this paper consists of transforming the Toeplitz matrix into a another structured matrix called Cauchy¿like. The particular properties of Cauchy¿like matrices are exploited in order to obtain two levels of parallelism that makes possible to highly reduce the execution time. The experimental results were obtained in a cluster of PC¿s.Supported by Spanish MCYT and FEDER under Grant TIC 2003-08238-C02-02Alonso-Jordá, P.; Vidal Maciá, AM. (2005). The symmetric-Toeplitz linear system problem in parallel. Computational Science -- ICCS 2005,Pt 1, Proceedings. 3514:220-228. https://doi.org/10.1007/11428831_28S2202283514Sweet, D.R.: The use of linear-time systolic algorithms for the solution of toeplitz problems. k Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University, Tue, 23 April 1996 15, 17, 55 GMT (1991)Evans, D.J., Oka, G.: Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications 12, 297–303 (1998)Gohberg, I., Koltracht, I., Averbuch, A., Shoham, B.: Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing 17, 563–577 (1991)Gallivan, K., Thirumalai, S., Dooren, P.V.: On solving block toeplitz systems using a block schur algorithm. In: Proceedings of the 23rd International Conference on Parallel Processing, Boca Raton, FL, USA, vol. 3, pp. 274–281. CRC Press, Boca Raton (1994)Thirumalai, S.: High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.d. th., Grad. College of the U. of Illinois at Urbana–Champaign (1996)Alonso, P., Badía, J.M., Vidal, A.M.: Parallel algorithms for the solution of toeplitz systems of linear equations. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 969–976. Springer, Heidelberg (2004)Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1995)Blackford, L., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)Alonso, P., Badía, J.M., González, A., Vidal, A.M.: Parallel design of multichannel inverse filters for audio reproduction. In: Parallel and Distributed Computing and Systems, IASTED, Marina del Rey, CA, USA, vol. II, pp. 719–724 (2003)Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. SIAM Press, Philadelphia (1992)Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. Linear Algebra and Signal Proc., IMA, Math. Appl. 69, 95–114 (1994)Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Mathematics of Computation 64, 1557–1576 (1995)Alonso, P., Vidal, A.M.: An efficient and stable parallel solution for symmetric toeplitz linear systems. TR DSIC-II/2005, DSIC–Univ. Polit. Valencia (2005)Kailath, T., Sayed, A.H.: Displacement structure: Theory and applications. SIAM Review 37, 297–386 (1995

    Penrose Limits, Deformed pp-Waves and the String Duals of N=1 Large n Gauge Theory

    Full text link
    A certain conformally invariant N=1 supersymmetric SU(n) gauge theory has a description as an infra-red fixed point obtained by deforming the N=4 supersymmetric Yang-Mills theory by giving a mass to one of its N=1 chiral multiplets. We study the Penrose limit of the supergravity dual of the large n limit of this N=1 gauge theory. The limit gives a pp-wave with R-R five-form flux and both R-R and NS-NS three-form flux. We discover that this new solution preserves twenty supercharges and that, in the light-cone gauge, string theory on this background is exactly solvable. Correspondingly, this latter is the stringy dual of a particular large charge limit of the large n gauge theory. We are able to identify which operators in the field theory survive the limit to form the string's ground state and some of the spacetime excitations. The full string model, which we exhibit, contains a family of non-trivial predictions for the properties of the gauge theory operators which survive the limit.Comment: 39 pages, Late

    Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field

    Full text link
    We consider a D7-brane probe of AdS5Ă—S5AdS_{5}\times S^5 in the presence of pure gauge BB-field. The dual gauge theory is flavored Yang-Mills theory in external magnetic field. We explore the dependence of the fermionic condensate on the bare quark mass mqm_{q} and study the discrete self-similar behavior of the theory near the origin of the parametric space. We calculate the critical exponents of the bare quark mass and the fermionic condensate. A study of the meson spectrum supports the expectation based on thermodynamic considerations that at zero bare quark mass the stable phase of the theory is a chiral symmetry breaking one. Our study reveals the self-similar structure of the spectrum near the critical phase of the theory, characterized by zero fermionic condensate and we calculate the corresponding critical exponent of the meson spectrum.Comment: 29 pages, 9 figures. Accepted in JHEP. Updated to mach the published version. One figure added, some definitions improve

    Holographic mesons in various dimensions

    Get PDF
    We calculate the spectrum of fluctuations of a probe Dk-brane in the background of N Dp-branes, for k=p,p+2,p+4 and p< 5. The result corresponds to the mesonic spectrum of a (p+1)-dimensional super-Yang-Mills (SYM) theory coupled to `dynamical quarks', i.e., fields in the fundamental representation -- the latter are confined to a defect for k=p and p+2. We find a universal behaviour where the spectrum is discrete and the mesons are deeply bound. The mass gap and spectrum are set by the scale M ~ m_q/g_{eff}(m_q), where m_q is the mass of the fundamental fields and g_{eff}(m_q) is the effective coupling evaluated at the quark mass, i.e. g_{eff}^2(m_q)=g_{ym}^2 N m_q^{p-3}. We consider the evolution of the meson spectra into the far infrared of three-dimensional SYM, where the gravity dual lifts to M-theory. We also argue that the mass scale appearing in the meson spectra is dictated by holography.Comment: 44 pages, 2 figures; v2: typos corrected, references adde

    Superstrings on NS5 backgrounds, deformed AdS3 and holography

    Full text link
    We study a non-standard decoupling limit of the D1/D5-brane system, which interpolates between the near-horizon geometry of the D1/D5 background and the near-horizon limit of the pure D5-brane geometry. The S-dual description of this background is actually an exactly solvable two-dimensional (worldsheet) conformal field theory: {null-deformed SL(2,R)} x SU(2) x T^4 or K3. This model is free of strong-coupling singularities. By a careful treatment of the SL(2,R), based on the better-understood SL(2,R) / U(1) coset, we obtain the full partition function for superstrings on SL(2,R) x SU(2) x K3. This allows us to compute the partition functions for the J^3 and J^2 current-current deformations, as well as the full line of supersymmetric null deformations, which links the SL(2,R) conformal field theory with linear dilaton theory. The holographic interpretation of this setup is a renormalization-group flow between the decoupled NS5-brane world-volume theory in the ultraviolet (Little String Theory), and the low-energy dynamics of super Yang--Mills string-like instantons in six dimensions.Comment: JHEP style, 59 pages, 1 figure; v2: minor changes, to appear in JHE

    A Review of Magnetic Phenomena in Probe-Brane Holographic Matter

    Full text link
    Gauge/gravity duality is a useful and efficient tool for addressing and studying questions related to strongly interacting systems described by a gauge theory. In this manuscript we will review a number of interesting phenomena that occur in such systems when a background magnetic field is turned on. Specifically, we will discuss holographic models for systems that include matter fields in the fundamental representation of the gauge group, which are incorporated by adding probe branes into the gravitational background dual to the gauge theory. We include three models in this review: the D3-D7 and D4-D8 models, that describe four-dimensional systems, and the D3-D7' model, that describes three-dimensional fermions interacting with a four-dimensional gauge field.Comment: 35 pages, 27 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee; references adde
    • …
    corecore