8 research outputs found

    Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed

    No full text
    International audienceParasites exist in every ecosystem and can have large influence on food web structure and function, yet, we know little about parasites’ effect on food web dynamics. Here we investigate the role of microbial parasitism (viruses of bacteria, phytoplankton and cyanobacteria, and parasitic chytrids on cyanobacteria) on the dynamics of trophic pathways and food web functioning during a cyanobacteria bloom, using linear inverse food web modeling parameterized with a 2-month long data set (biomasses, infection parameters, etc.). We show the importance of grazing on heterotrophic bacteria (the microbial pathway: DOC → bacteria → consumer) and how consumers depended on bacteria during peak-cyanobacteria bloom, which abundance was partly driven by the viral activity. As bacteria become the main energy pathway to the consumers, the system takes a more web-like structure through increased omnivory, and may thereby facilitate the system’s persistence to the cyanobacteria outbreak. We also showed how the killing of cyanobacteria host cells by chytrids had important impact on the food web dynamics by facilitating grazing on the cyanobacteria, and by offering alternative pathways to the consumers. This seemed to increase the system’s ability to return to a mix of trophic pathways, which theoretically increases the stability of the system

    Die Nebennierenrinde

    No full text

    Chemical Ecology and Biochemistry of Dytiscidae

    No full text

    Literatur

    No full text
    corecore