88 research outputs found

    Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis

    Get PDF
    BACKGROUND: Fungal components have been shown very effective in generating Th17 responses. We investigated whether exposure to a minute amount of C. albicans in the arthritic joint altered the local cytokine environment, leading to enhanced Th17 expansion and resulting in a more destructive arthritis. METHODOLOGY: Chronic SCW arthritis was induced by repeated injection with Streptococcus pyogenes (SCW) cell wall fragments into the knee joint of C57Bl/6 mice, alone or in combination with the yeast of C. albicans or Zymosan A. During the chronic phase of the arthritis, the cytokine levels, mRNA expression and histopathological analysis of the joints were performed. To investigate the phenotype of the IL-17 producing T-cells, synovial cells were isolated and analyzed by flowcytometry. PRINCIPAL FINDINGS: Intra-articular injection of either Zymosan A or C. albicans on top of the SCW injection both resulted in enhanced joint swelling and inflammation compared to the normal SCW group. However, only the addition of C. albicans during SCW arthritis resulted in severe chondrocyte death and enhanced destruction of cartilage and bone. Additionally, exposure to C. albicans led to increased IL-17 in the arthritic joint, which was accompanied by an increased synovial mRNA expression of T-bet and RORgammaT. Moreover, the C. albicans-injected mice had significantly more Th17 cells in the synovium, of which a large population also produced IFN-gamma. CONCLUSION: This study clearly shows that minute amounts of fungal components, like C. albicans, are very potent in interfering with the local cytokine environment in an arthritic joint, thereby polarizing arthritis towards a more destructive phenotype

    Interleukin-17-producing decidual CD4+ T cells are not deleterious for human pregnancy when they also produce interleukin-4

    Get PDF
    BACKGROUND: Trophoblast expressing paternal HLA-C antigens resemble a semiallograft, and could be rejected by maternal CD4+ T lymphocytes. We examined the possible role in human pregnancy of Th17 cells, known to be involved in allograft rejection and reported for this reason to be responsible for miscarriages. We also studied Th17/Th1 and Th17/Th2 cells never investigated before. We defined for the first time the role of different Th17 subpopulations at the embryo implantation site and the role of HLA-G5, produced by the trophoblast/embryo, on Th17 cell differentiation. METHODS: Cytokine production by CD4+ purified T cell and T clones from decidua of normal pregnancy, unexplained recurrent abortion, and ectopic pregnancy at both embryo implantation site and distant from that site were analyzed for protein and mRNA production. Antigen-specific T cell lines were derived in the presence and in the absence of HLA-G5. RESULTS: We found an associated spontaneous production of IL-17A, IL-17F and IL-4 along with expression of CD161, CCR8 and CCR4 (Th2- and Th17-type markers) in fresh decidua CD4+ T cells during successful pregnancy. There was a prevalence of Th17/Th2 cells (producing IL-17A, IL-17F, IL-22 and IL-4) in the decidua of successful pregnancy, but the exclusive presence of Th17 (producing IL-17A, IL-17F, IL-22) and Th17/Th1 (producing IL-17A, IL-17F, IL-22 and IFN-γ) cells was found in the decidua of unexplained recurrent abortion. More importantly, we observed that Th17/Th2 cells were exclusively present at the embryo implantation site during tubal ectopic pregnancy, and that IL-4, GATA-3, IL-17A, ROR-C mRNA levels increased in tubal biopsies taken from embryo implantation sites, whereas Th17, Th17/Th1 and Th1 cells are exclusively present apart from implantation sites. Moreover, soluble HLA-G5 mediates the development of Th17/Th2 cells by increasing IL-4, IL-17A and IL-17F protein and mRNA production of CD4+ T helper cells. CONCLUSION: No pathogenic role of decidual Th17 cells during pregnancy was observed. Indeed, a beneficial role for these cells was observed when they also produced IL-4. HLA-G5 could be the key feature of the uterine microenvironment responsible for the development of Th17/Th2 cells, which seem to be crucial for successful embryo implantatio

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    The combination of cCTG and amniotic fluid index for the prediction of neonatal acidemia at birth: a modified biophysical profile

    No full text
    corecore