9 research outputs found

    Mimivirus: leading the way in the discovery of giant viruses of amoebae

    No full text
    International audienceThe accidental discovery of the giant virus of amoeba -Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) -in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans

    Measurements of hadron production in π++C and π++Be interactions at 60  GeV/c

    No full text
    Precise knowledge of hadron production rates in the generation of neutrino beams is necessary for accelerator-based neutrino experiments to achieve their physics goals. NA61/SHINE, a large-acceptance hadron spectrometer, has recorded hadron+nucleus interactions relevant to ongoing and future long-baseline neutrino experiments at Fermi National Accelerator Laboratory. This paper presents three analyses of interactions of 60  GeV/c π+ with thin, fixed carbon and beryllium targets. Integrated production and inelastic cross sections were measured for both of these reactions. In an analysis of strange, neutral hadron production, differential production multiplicities of K0S, Λ and ¯Λ were measured. Lastly, in an analysis of charged hadron production, differential production multiplicities of π+, π−, K+, K− and protons were measured. These measurements will enable long-baseline neutrino experiments to better constrain predictions of their neutrino flux in order to achieve better precision on their neutrino cross section and oscillation measurements

    Allgemeine Stoffwechselmorphologie des Cytoplasmas

    No full text

    Schilddrüse

    No full text

    Fermente

    No full text
    corecore