1,632 research outputs found

    Non-Abelian Global Strings at Chiral Phase Transition

    Get PDF
    We construct non-Abelian global string solutions in the U(N)_L x U(N)_R linear sigma model. These strings are the most fundamental objects which are expected to form during the chiral phase transitions, because the Abelian eta' string is marginally decomposed into N of them. We point out Nambu-Goldstone modes of CP^{N-1} for breaking of U(N)_V arise around a non-Abelian vortex.Comment: 10 pages, 2 figure

    Non-integrability of Self-dual Yang-Mills-Higgs System

    Get PDF
    We examine integrability of self-dual Yang-Mills system in the Higgs phase, with taking simpler cases of vortices and domain walls. We show that the vortex equations and the domain-wall equations do not have Painleve property. This fact suggests that these equations are not integrable.Comment: 15 pages, no figures, v2: references added, v3: typos corrected, the final version to appear in NP

    Vortex counting from field theory

    Full text link
    The vortex partition function in 2d N = (2,2) U(N) gauge theory is derived from the field theoretical point of view by using the moduli matrix approach. The character for the tangent space at each moduli space fixed point is written in terms of the moduli matrix, and then the vortex partition function is obtained by applying the localization formula. We find that dealing with the fermionic zero modes is crucial to obtain the vortex partition function with the anti-fundamental and adjoint matters in addition to the fundamental chiral multiplets. The orbifold vortex partition function is also investigated from the field theoretical point of view.Comment: 21 pages, no figure

    Vortices on Orbifolds

    Full text link
    The Abelian and non-Abelian vortices on orbifolds are investigated based on the moduli matrix approach, which is a powerful method to deal with the BPS equation. The moduli space and the vortex collision are discussed through the moduli matrix as well as the regular space. It is also shown that a quiver structure is found in the Kahler quotient, and a half of ADHM is obtained for the vortex theory on the orbifolds as the case before orbifolding.Comment: 25 pages, 4 figures; references adde

    Group Theory of Non-Abelian Vortices

    Full text link
    We investigate the structure of the moduli space of multiple BPS non-Abelian vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our attention on the action of the exact global (color-flavor diagonal) SU(N) symmetry on it. The moduli space of a single non-Abelian vortex, CP(N-1), is spanned by a vector in the fundamental representation of the global SU(N) symmetry. The moduli space of winding-number k vortices is instead spanned by vectors in the direct-product representation: they decompose into the sum of irreducible representations each of which is associated with a Young tableau made of k boxes, in a way somewhat similar to the standard group composition rule of SU(N) multiplets. The K\"ahler potential is exactly determined in each moduli subspace, corresponding to an irreducible SU(N) orbit of the highest-weight configuration.Comment: LaTeX 46 pages, 4 figure

    Zero-modes of Non-Abelian Solitons in Three Dimensional Gauge Theories

    Full text link
    We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d=2+1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H_0 only and those of the non-topological solitons are governed by both H_0 and the gauge invariant field \Omega. We prove local uniqueness of the master equation in the YM case and finally, compare all results between the CS and YM theories.Comment: 54 pages, 1 figur

    Valence instability of cerium under pressure in the Kondo-like perovskite La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3

    Full text link
    Effect of hydrostatic pressure and magnetic field on electrical resistance of the Kondo-like perovskite manganese oxide, La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3 with a ferrimagnetic ground state, have been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments undergo double exchange mediated ferromagnetic ordering at TCT_{\rm C} \sim 280 K and there is a resistance maximum, TmaxT_{\rm max} at about 130 K which is correlated with an antiferromagnetic ordering of {\it cerium} with respect to the Mn-sublattice moments. Under pressure, the TmaxT_{\rm max} shifts to lower temperature at a rate of dTmaxT_{max}/dPP = -162 K/GPa and disappears at a critical pressure PcP_{\rm c} \sim 0.9 GPa. Further, the coefficient, mm of logT-logT term due to Kondo scattering decreases linearly with increase of pressure showing an inflection point in the vicinity of PcP_{\rm c}. These results suggest that {\it cerium} undergoes a transition from Ce3+^{3+} state to Ce4+^{4+}/Ce3+^{3+} mixed valence state under pressure. In contrast to pressure effect, the applied magnetic field shifts TmaxT_{\rm max} to higher temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun

    Supersymmetry Breaking on Gauged Non-Abelian Vortices

    Full text link
    There are a large number of systems characterized by a completely broken gauge symmetry, but with an unbroken global color-flavor diagonal symmetry, i.e., systems in the so-called color-flavor locked phase. If the gauge symmetry breaking supports vortices, the latter develop non-Abelian orientational zero-modes and become non-Abelian vortices, a subject of intense study in the last several years. In this paper we consider the effects of weakly gauging the full exact global flavor symmetry in such systems, deriving an effective description of the light excitations in the presence of a vortex. Surprising consequences are shown to follow. The fluctuations of the vortex orientational modes get diffused to bulk modes through tunneling processes. When our model is embedded in a supersymmetric theory, the vortex is still 1/2 BPS saturated, but the vortex effective action breaks supersymmetry spontaneously.Comment: Latex, 24 pages, 1 figur

    Solitons in Supersymmety Breaking Meta-Stable Vacua

    Full text link
    In recently found supersymmetry-breaking meta-stable vacua of the supersymmetric QCD, we examine possible exsitence of solitons. Homotopy groups of the moduli space of the meta-stable vacua show that there is no nontrivial soliton for SU(N_c) gauge group. When U(1)_B symmetry present in the theory is gauged, we find non-BPS solitonic (vortex) strings whose existence and properties are predicted from brane configurations. We obtain explicit classical solutions which reproduce the predicitions. For SO(N_c) gauge group, we find there are solitonic strings for N = N_f-N_c+4 = 2, and Z_2 strings for the other N. The strings are meta-stable as they live in the meta-stable vacua.Comment: 30 pages, 14 figures, Comments on stability of non-BPS vortices are added, Comments on sigma model solitons are added, An appendix is adde
    corecore