8,768 research outputs found

    Distributional versions of Littlewood's Tauberian theorem

    Get PDF
    We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We apply these Tauberian results to deduce a number of Tauberian theorems for power series where Ces\`{a}ro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.Comment: 15 page

    Hadamard Regularization

    Get PDF
    Motivated by the problem of the dynamics of point-particles in high post-Newtonian (e.g. 3PN) approximations of general relativity, we consider a certain class of functions which are smooth except at some isolated points around which they admit a power-like singular expansion. We review the concepts of (i) Hadamard ``partie finie'' of such functions at the location of singular points, (ii) the partie finie of their divergent integral. We present and investigate different expressions, useful in applications, for the latter partie finie. To each singular function, we associate a partie-finie (Pf) pseudo-function. The multiplication of pseudo-functions is defined by the ordinary (pointwise) product. We construct a delta-pseudo-function on the class of singular functions, which reduces to the usual notion of Dirac distribution when applied on smooth functions with compact support. We introduce and analyse a new derivative operator acting on pseudo-functions, and generalizing, in this context, the Schwartz distributional derivative. This operator is uniquely defined up to an arbitrary numerical constant. Time derivatives and partial derivatives with respect to the singular points are also investigated. In the course of the paper, all the formulas needed in the application to the physical problem are derived.Comment: 50 pages, to appear in Journal of Mathematical Physic

    On the order of summability of the Fourier inversion formula

    Get PDF
    In this article we show that the order of the point value, in the sense of Ɓojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that if the distribution has a distributional point value of order k, then its Fourier series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely, we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of order k, then the distribution is the (k+1)-th derivative of a locally integrable function, and the distribution has a distributional point value of order k+2. We also establish connections between orders of summability and local behavior for other Fourier inversion problems

    Lorentzian regularization and the problem of point-like particles in general relativity

    Get PDF
    The two purposes of the paper are (1) to present a regularization of the self-field of point-like particles, based on Hadamard's concept of ``partie finie'', that permits in principle to maintain the Lorentz covariance of a relativistic field theory, (2) to use this regularization for defining a model of stress-energy tensor that describes point-particles in post-Newtonian expansions (e.g. 3PN) of general relativity. We consider specifically the case of a system of two point-particles. We first perform a Lorentz transformation of the system's variables which carries one of the particles to its rest frame, next implement the Hadamard regularization within that frame, and finally come back to the original variables with the help of the inverse Lorentz transformation. The Lorentzian regularization is defined in this way up to any order in the relativistic parameter 1/c^2. Following a previous work of ours, we then construct the delta-pseudo-functions associated with this regularization. Using an action principle, we derive the stress-energy tensor, made of delta-pseudo-functions, of point-like particles. The equations of motion take the same form as the geodesic equations of test particles on a fixed background, but the role of the background is now played by the regularized metric.Comment: 34 pages, to appear in J. Math. Phy

    Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

    Get PDF
    Three decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for high (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as "scaling" features an infrared power law for the gluon and ghost propagators, the "massive" solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the the massive-type solutions minimise the quantum effective action.Comment: 13 pages, 7 figures. Change of title to reflect version accepted for publicatio

    On fermionic tilde conjugation rules and thermal bosonization. Hot and cold thermofields

    Full text link
    A generalization of Ojima tilde conjugation rules is suggested, which reveals the coherent state properties of thermal vacuum state and is useful for the thermofield bosonization. The notion of hot and cold thermofields is introduced to distinguish different thermofield representations giving the correct normal form of thermofield solution for finite temperature Thirring model with correct renormalization and anticommutation properties.Comment: 13 page

    Temperature dependence of the anomalous effective action of fermions in two and four dimensions

    Get PDF
    The temperature dependence of the anomalous sector of the effective action of fermions coupled to external gauge and pseudo-scalar fields is computed at leading order in an expansion in the number of Lorentz indices in two and four dimensions. The calculation preserves chiral symmetry and confirms that a temperature dependence is compatible with axial anomaly saturation. The result checks soft-pions theorems at zero temperature as well as recent results in the literature for the pionic decay amplitude into static photons in the chirally symmetric phase. The case of chiral fermions is also considered.Comment: RevTex, 19 pages, no figures. References adde

    A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids

    Full text link
    Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding states approach. This assumes that all pair correlation functions gαÎČ(r)g_{\alpha \beta}(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic fluids a {\it scaling approximation} (SA) successfully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by solving the Orstein-Zernike (OZ) integral equations coupled with an approximate closure. The SA is first tested within the mean spherical approximation (MSA) closure, which allows analytical solutions. The results are found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown to be an improvement over the ``decoupling approximation'' extended to the ionic case. The simplicity of the SA scheme allows its application also when the OZ equations can be solved only numerically. An example is then given by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach, its possible use in the analysis of experimental scattering data and other related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty, to appear in Phys. Rev. E (1999

    Grande Queimado numa Unidade de Cuidados Intensivos PediĂĄtricos – ExperiĂȘncia de 20 Anos

    Get PDF
    Introdução: A abordagem inicial do grande queimado atĂ© Ă  sua estabilização hemodinĂąmica e hidroeletrolĂ­tica Ă© fundamental para diminuir a morbimortalidade. Material e MĂ©todos: Estudo retrospectivo, descritivo e analĂ­tico, de todos os internamentos por queimadura numa Unidade de Cuidados Intensivos PediĂĄtricos durante o perĂ­odo de 20 anos (Abril/1991 a Dezembro/2010). Avaliaram -se parĂąmetros nosodemogrĂĄficos, agente causal, gravidade e extensĂŁo da queimadura, procedimentos, terapĂȘutica, complicaçÔes e resultados. Resultados: Ocorreram 137 internamentos por queimadura correspondentes a 123 doentes e a 1,8% do total de internamentos na UCIP. A mediana de idade foi 3,6 anos e 62,4% era do sexo masculino. Verificou -se maior incidĂȘncia em Agosto (13,0%). Foram agentes da queimadura: lĂ­quido fervente (38,1%), fogo (38,1%) e eletricidade (23,9%). A mediana da superfĂ­cie corporal queimada foi de 30% (0,5 -92,0%), com queimaduras do terceiro grau em 59,0% dos doentes. Necessitaram de ventilação mecĂąnica 45,5% e de cateter venoso central 64,2% dos doentes. As complicaçÔes incluĂ­ram: sĂ©psis (29,2%), falĂȘncia respiratĂłria (21,1%), falĂȘncia cardiovascular (16,5%) e falĂȘncia multiorgĂąnica (18,8%). Verificou -se melhoria em 88,6% dos casos e ocorreram 10 Ăłbitos (8,1%), nove dos quais nos primeiros 10 anos do estudo e nove devido a causa infeciosa. No entanto, o score avaliador do risco de mortalidade (PRISM), Ă­ndice de intervenção terapĂȘutica (TISS) e o risco de probabilidade de morte (RPM) foram mais elevados no segundo decĂ©nio. ConclusĂ”es: Nos Ășltimos anos do estudo, apesar do maior nĂșmero de admissĂ”es e da sua maior gravidade, verificou -se uma diminuição do nĂșmero de mortes, o que poderĂĄ dever-se Ă  melhoria dos cuidados prestados

    To what extent is Gluon Confinement an empirical fact?

    Get PDF
    Experimental verifications of Confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about Gluon Confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic
    • 

    corecore