5 research outputs found
Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment?
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems.Versión del edito
Avaliação da qualidade da água e autodepuração do ribeirão do meio, Leme (SP) Evaluation of the water quality and auto-purification from the meio stream, Leme (SP)
Este trabalho utilizou relações hidroquímicas para avaliar possíveis entradas antropogênicas nas águas superficiais do Ribeirão do Meio (SP). Realizaram-se três coletas de água durante os meses de fevereiro, abril e julho de 2005 em cinco pontos de coleta analisando: vazão, temperatura, turbidez, pH, condutividade, oxigênio dissolvido, sólidos totais dissolvidos, sólidos totais em suspensão, Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-), PO4(3-) e NO3-. As características da água próximo à nascente até a cidade de Leme permitem concluir que há pouca interferência na sua qualidade, porém, a falta de tratamento para o esgoto doméstico da cidade de Leme piora a sua qualidade. Para se modelar à autodepuração utilizou-se o modelo QUAL 2K, que identificou as zonas de autodepuração e indicou a necessidade de tratamento de esgotos em nível secundário, com eficiência de 76%.<br>This investigation utilized hydrochemical relations to evaluate possible anthropogenic inputs at Meio Stream, São Paulo State. Realized three sampling of water during the months of February, April and July/2005, in five sampling points analyzing: discharge, temperature, turbidity, pH, electrical conductivity (EC), dissolved oxygen (DO), TDS (total dissolved solids), TSS (total suspended solids), Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-), PO4(3-) and NO3-. The characteristics of water close to spring until Leme city allow concluding that there is a small interference in its quality, however the absence of treatment of domestic wastewater at Leme city reduced its quality. It was applied the QUAL 2K modeling to evaluate the Meio Stream auto-purification identified the auto-purification zones and indicated the necessity of secondary wastewater treatment, with 76% of efficiency