29 research outputs found

    Mutations in Uroplakin IIIA are a rare cause of renal hypodysplasia in humans

    No full text
    BACKGROUND: Renal hypodysplasia, characterized by a decrease in nephron number, small overall kidney size, and maldeveloped renal tissue, is a leading cause of chronic renal failure in young children. Familial clustering and renal hypodysplasia phenotypes observed in transgenic animal models suggest a genetic contribution. Uroplakin IIIa (encoded by UPIIIA) is an integral membrane protein present in urothelial plaques, and the murine UPIIIa knockout is associated with urothelial anomalies and vesicoureteral reflux. De novo UPIIIA mutations recently were identified in 4 of 17 patients with severe bilateral renal adysplasia. METHODS: To evaluate the overall role of UPIIIA in human renal hypodysplasia pathogenesis, we performed UPIIIA mutation analysis in a cohort of 170 pediatric patients affected by severe unilateral or bilateral renal hypodysplasia. Eighty-one patients were affected by bilateral nonobstructive renal hypodysplasia; of these, 61 were without vesicoureteral reflux. Eighty-four patients presented with unilateral nonobstructive renal hypodysplasia, including 24 patients with unilateral multicystic dysplastic kidneys. Family history was positive in 11%. RESULTS: Mutation analysis showed 2 heterozygous mutations not observed in 200 race-matched control chromosomes. In only 1 family was distribution of the UPIIIA mutation consistent with a disease-causing effect. This de novo missense mutation (Gly202Asp) was identified in a patient with unilateral multicystic dysplastic kidneys. The second (intronically located) mutation appeared unlikely to be disease causing because it did not segregate with an obvious disease phenotype in the affected family. CONCLUSION: Our results indicate that de novo mutations in UPIIIA can be involved in defective early kidney development, but probably constitute only a rare cause of human renal hypodysplasia in a minor subset of individuals

    Early Proteinuria Lowering by Angiotensin-Converting Enzyme Inhibition Predicts Renal Survival in Children with CKD

    Get PDF
    Background Although pharmacotherapeutic proteinuria lowering was found to be nephroprotective in adults, the predictive value of early drug-induced proteinuria reduction for long-term renal survival in pediatric CKD is unknown. We analyzed data from the ESCAPE Trial for a potential association between initial antiproteinuric effect of standardized angiotensin-converting enzyme (ACE) inhibition and renal disease progression in children with CKD.Methods In total, 280 eligible children with CKD stages 2-4 (mean age 11.7 years old, median eGFR 46 ml/min per 1.73 m2, 71% congenital renal malformations) received a fixed dose of ramipril (6 mg/m2 per day) and were subsequently randomized to conventional or intensified BP control. We assessed initial proteinuria reduction from baseline to first measurement on ramipril (at 2.5±1.3 months). We used multivariable Cox modeling to estimate the association between initial proteinuria reduction and the risk of reaching a renal end point (50% eGFR decline or ESRD), which occurred in 80 patients during 5 years of observation.Results Ramipril therapy lowered proteinuria by a mean of 43.5% (95% confidence interval, 36.3% to 49.9%). Relative to proteinuria reduction <30%, 30%-60% and >60% reduction resulted in hazard ratios (95% confidence intervals) of 0.70 (0.40 to 1.22) and 0.42 (0.22 to 0.79), respectively. This association was independent of age, sex, CKD diagnosis, baseline eGFR, baseline proteinuria, initial BP, and concomitant BP reduction.Conclusions The early antiproteinuric effect of ACE inhibition is associated with long-term preservation of renal function in children with CKD. Proteinuria lowering should be considered an important target in the management of pediatric CKD
    corecore