242 research outputs found

    Structure of charge density waves in La1.875 Ba0.125 CuO4

    Get PDF
    Although charge density wave (CDW) correlations exist in several families of cuprate superconductors, they exhibit substantial variation in CDW wave vector and correlation length, indicating a key role for CDW-lattice interactions. We investigated this interaction in La1.875Ba0.125CuO4 using single-crystal x-ray diffraction to collect a large number of CDW peak intensities and determined the Cu and La/Ba atomic distortions induced by the formation of CDW order. Within the CuO2 planes, the distortions involve a periodic modulation of the Cu-Cu spacing along the direction of the ordering wave vector. The charge ordering within the copper-oxygen layer induces an out-of-plane breathing modulation of the surrounding lanthanum layers, which leads to a related distortion on the adjacent copper-oxygen layer. Our result implies that the CDW-related structural distortions do not remain confined to a single layer but rather propagate an appreciable distance through the crystal. This leads to overlapping structural modulations, in which CuO2 planes exhibit distortions arising from the orthogonal CDWs in adjacent layers as well as distortions from the CDW within the layer itself. We attribute this striking effect to the weak c-axis charge screening in cuprates and suggest this effect could help couple the CDWs between adjacent planes in the crystal

    Stacking disorder in Ξ±βˆ’RuCl_{3} investigated via x-ray three-dimensional difference pair distribution function analysis

    Get PDF
    The van der Waals layered magnet Ξ± βˆ’ RuCl_{3} offers tantalizing prospects for the realization of Majorana quasiparticles. Efforts to understand this are, however, hampered by inconsistent magnetic and thermal transport properties likely coming from the formation of structural disorder during crystal growth, postgrowth processing, or upon cooling through the first order structural transition. Here, we investigate structural disorder in Ξ± βˆ’ RuCl_{3} using x-ray diffuse scattering and three-dimensional difference pair distribution function analysis. We develop a quantitative model that describes disorder in Ξ± βˆ’ RuCl_{3} in terms of rotational twinning and intermixing of the high- and low-temperature structural layer stacking. This disorder may be important to consider when investigating the detailed magnetic and electronic properties of this widely studied material

    Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma

    Get PDF
    Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes

    Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat

    Get PDF
    A high-resolution chromosome arm-specific mapping population was used in an attempt to locate/detect gene(s)/QTL for different root traits on the short arm of rye chromosome 1 (1RS) in bread wheat. This population consisted of induced homoeologous recombinants of 1RS with 1BS, each originating from a different crossover event and distinct from all other recombinants in the proportions of rye and wheat chromatin present. It provides a simple and powerful approach to detect even small QTL effects using fewer progeny. A promising empirical Bayes method was applied to estimate additive and epistatic effects for all possible marker pairs simultaneously in a single model. This method has an advantage for QTL analysis in minimizing the error variance and detecting interaction effects between loci with no main effect. A total of 15 QTL effects, 6 additive and 9 epistatic, were detected for different traits of root length and root weight in 1RS wheat. Epistatic interactions were further partitioned into inter-genomic (wheat and rye alleles) and intra-genomic (rye–rye or wheat–wheat alleles) interactions affecting various root traits. Four common regions were identified involving all the QTL for root traits. Two regions carried QTL for almost all the root traits and were responsible for all the epistatic interactions. Evidence for inter-genomic interactions is provided. Comparison of mean values supported the QTL detection

    Fairness Expectations and Altruistic Sharing in 15-Month-Old Human Infants

    Get PDF
    Human cooperation is a key driving force behind the evolutionary success of our hominin lineage. At the proximate level, biologists and social scientists have identified other-regarding preferences – such as fairness based on egalitarian motives, and altruism – as likely candidates for fostering large-scale cooperation. A critical question concerns the ontogenetic origins of these constituents of cooperative behavior, as well as whether they emerge independently or in an interrelated fashion. The answer to this question will shed light on the interdisciplinary debate regarding the significance of such preferences for explaining how humans become such cooperative beings. We investigated 15-month-old infants' sensitivity to fairness, and their altruistic behavior, assessed via infants' reactions to a third-party resource distribution task, and via a sharing task. Our results challenge current models of the development of fairness and altruism in two ways. First, in contrast to past work suggesting that fairness and altruism may not emerge until early to mid-childhood, 15-month-old infants are sensitive to fairness and can engage in altruistic sharing. Second, infants' degree of sensitivity to fairness as a third-party observer was related to whether they shared toys altruistically or selfishly, indicating that moral evaluations and prosocial behavior are heavily interconnected from early in development. Our results present the first evidence that the roots of a basic sense of fairness and altruism can be found in infancy, and that these other-regarding preferences develop in a parallel and interwoven fashion. These findings support arguments for an evolutionary basis – most likely in dialectical manner including both biological and cultural mechanisms – of human egalitarianism given the rapidly developing nature of other-regarding preferences and their role in the evolution of human-specific forms of cooperation. Future work of this kind will help determine to what extent uniquely human sociality and morality depend on other-regarding preferences emerging early in life

    The genetic basis and evolution of red blood cell sickling in deer

    Get PDF
    Crescent-shaped red blood cells, the hallmark of sickle-cell disease, present a striking departure from the biconcave disc shape normally found in mammals. Characterized by increased mechanical fragility, sickled cells promote haemolytic anaemia and vaso-occlusions and contribute directly to disease in humans. Remarkably, a similar sickle-shaped morphology has been observed in erythrocytes from several deer species, without obvious pathological consequences. The genetic basis of erythrocyte sickling in deer, however, remains unknown. Here, we determine the sequences of human Ξ²-globin orthologues in 15 deer species and use protein structural modelling to identify a sickling mechanism distinct from the human disease, coordinated by a derived valine (E22V) that is unique to sickling deer. Evidence for long-term maintenance of a trans-species sickling/non-sickling polymorphism suggests that sickling in deer is adaptive. Our results have implications for understanding the ecological regimes and molecular architectures that have promoted convergent evolution of sickling erythrocytes across vertebrates

    High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections

    Get PDF
    The transcription factor GAMYB is involved in gibberellin signalling in cereal aleurone cells and in plant developmental processes. Nucleotide diversity of HvGAMYB and TaGAMYB was investigated in 155 barley (Hordeum vulgare) and 42 wheat (Triticum aestivum) accessions, respectively. Polymorphisms defined 18 haplotypes in the barley collection and 1, 7 and 3 haplotypes for the A, B, and D genomes of wheat, respectively. We found that (1) Hv- and TaGAMYB genes have identical structures. (2) Both genes show a high level of nucleotide identity (>95%) in the coding sequences and the distribution of polymorphisms is similar in both collections. At the protein level the functional domain is identical in both species. (3) GAMYB genes map to a syntenic position on chromosome 3. GAMYB genes are different in both collections with respect to the Tajima D statistic and linkage disequilibrium (LD). A moderate level of LD was observed in the barley collection. In wheat, LD is absolute between polymorphic sites, mostly located in the first intron, while it decays within the gene. Differences in Tajima D values might be due to a lower selection pressure on HvGAMYB, compared to its wheat orthologue. Altogether our results provide evidence that there have been only few evolutionary changes in Hv- and TaGAMYB. This confirms the close relationship between these species and also highlights the functional importance of this transcription factor

    LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors

    Get PDF
    LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi's sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism

    Gut Microbial Gene Expression in Mother-Fed and Formula-Fed Piglets

    Get PDF
    Effects of diet on the structure and function of gut microbial communities in newborn infants are poorly understood. High-resolution molecular studies are needed to definitively ascertain whether gut microbial communities are distinct in milk-fed and formula-fed infants.Pyrosequencing-based whole transcriptome shotgun sequencing (RNA-seq) was used to evaluate community wide gut microbial gene expression in 21 day old neonatal piglets fed either with sow's milk (mother fed, MF; n = 4) or with artificial formula (formula fed, FF; n = 4). Microbial DNA and RNA were harvested from cecal contents for each animal. cDNA libraries and 16S rDNA amplicons were sequenced on the Roche 454 GS-FLX Titanium system. Communities were similar at the level of phylum but were dissimilar at the level of genus; Prevotella was the dominant genus within MF samples and Bacteroides was most abundant within FF samples. Screened cDNA sequences were assigned functional annotations by the MG-RAST annotation pipeline and based upon best-BLASTX-hits to the NCBI COG database. Patterns of gene expression were very similar in MF and FF animals. All samples were enriched with transcripts encoding enzymes for carbohydrate and protein metabolism, as well as proteins involved in stress response, binding to host epithelium, and lipopolysaccharide metabolism. Carbohydrate utilization transcripts were generally similar in both groups. The abundance of enzymes involved in several pathways related to amino acid metabolism (e.g., arginine metabolism) and oxidative stress response differed in MF and FF animals.Abundant transcripts identified in this study likely contribute to a core microbial metatranscriptome in the distal intestine. Although microbial community gene expression was generally similar in the cecal contents of MF and FF neonatal piglets, several differentially abundant gene clusters were identified. Further investigations of gut microbial gene expression will contribute to a better understanding of normal and abnormal enteric microbiology in animals and humans
    • …
    corecore