20 research outputs found

    Stereospecific winding of polycyclic aromatic hydrocarbons into Trinacria propellers

    Get PDF
    The stereospecific trimerization of enantiomerically-pure binaphthols with hexakis(bromomethyl)benzene gives access in one step to enantiomerically-pure molecular propellers, in which three binaphthyl rings are held together through dioxecine rings. X-Ray diffraction analysis revealed that three out the six naphthyl moieties are folded in a (EF)3-type arrangement held by three intramolecular C-H…π interactions. This slips outward the three remaining naphthyl rings in a blade-like fashion, just like in three-folded propeller components. This peculiar conformation shows striking similarity to the mythological Sicilian symbol of Trinacria, from which the name "trinacria propeller" derives. The propeller conformation is also preserved in chlorinated solutions, as displayed by the presence of a peak at 4.7 ppm typical of an aromatic proton resonance engaged in a C-H…π interaction. The denaturation of the propeller-like conformation is obtained at high temperature, corresponding to activation energy for the ring inversion of ca. 18.2 kcal mol-1. Notably, halide-functionalized molecular propellers exposing I-atoms at the leading and trailing edges could be prepared stereo- and regiospecifically by choosing the relevant iodo-bearing BINOL derivative

    DNA Methods to Identify Missing Persons

    Full text link
    Human identification by DNA analysis in missing person cases typically involves comparison of two categories of sample: a reference sample, which could be obtained from intimate items of the person in question or from family members, and the questioned sample from the unknown person-usually derived from the bones, teeth, or soft tissues of human remains. Exceptions include the analysis of archived tissues, such as those held by hospital pathology departments, and the analysis of samples relating to missing, but living persons. DNA is extracted from the questioned and reference samples and well-characterized regions of the genetic code are amplified from each source using the Polymerase Chain Reaction (PCR), which generates sufficient copies of the target region for visualization and comparison of the genetic sequences obtained from each sample. If the DNA sequences of the questioned and reference samples differ, this is normally sufficient for the questioned DNA to be excluded as having come from the same source. If the sequences are identical, statistical analysis is necessary to determine the probability that the match is a consequence of the questioned sequence coming from the same individual who provided the reference sample or from a randomly occurring individual in the general population. Match probabilities that are currently achievable are frequently greater than 1 in 1 billion, allowing identity to be assigned with considerable confidence in many cases
    corecore