36 research outputs found
Primordial Black Holes as All Dark Matter
We argue that a primordial black hole is a natural and unique candidate for
all dark matter. We show that, in a smooth-hybrid new double inflation model, a
right amount of the primordial black holes, with a sharply-defined mass, can be
produced at the end of the smooth-hybrid regime, through preheating. We first
consider masses < 10^(-7)M_sun which are allowed by all the previous
constraints. We next discuss much heavier mass 10^5 M_sun hinted at by entropy,
and galactic size evolution, arguments. Effects on the running of the scalar
spectral index are computed.Comment: 14 pages, 2 figures, a version to appear in JCAP
Non-Baryonic Dark Matter - Observational Evidence and Detection Methods
The evidence for the existence of dark matter in the universe is reviewed. A
general picture emerges, where both baryonic and non-baryonic dark matter is
needed to explain current observations. In particular, a wealth of
observational information points to the existence of a non-baryonic component,
contributing between around 20 and 40 percent of the critical mass density
needed to make the universe geometrically flat on large scales. In addition, an
even larger contribution from vacuum energy (or cosmological constant) is
indicated by recent observations. To the theoretically favoured particle
candidates for non-baryonic dark matter belong axions, supersymmetric
particles, and of less importance, massive neutrinos. The theoretical
foundation and experimental situation for each of these is reviewed. Direct and
indirect methods for detection of supersymmetric dark matter are described in
some detail. Present experiments are just reaching the required sensitivity to
discover or rule out some of these candidates, and major improvements are
planned over the coming years.Comment: Submitted to Reports on Progress in Physics, 59 pages, LaTeX, iopart
macro, 14 embedded postscript figure
Observational Limits on Machos in the Galactic Halo
We present final results from the first phase of the EROS search for
gravitational microlensing of stars in the Magellanic Clouds by unseen
deflectors (machos: MAssive Compact Halo Objects). The search is sensitive to
events with time scales between 15 minutes and 200 days corresponding to
deflector masses in the range 1.e-7 to a few solar masses. Two events were
observed that are compatible with microlensing by objects of mass of about 0.1
Mo. By comparing the results with the expected number of events for various
models of the Galaxy, we conclude that machos in the mass range [1.e-7, 0.02]
Mo make up less than 20% (95% C.L.) of the Halo dark matter.Comment: 4 pages, 3 Postscript figures, to be published in Astronomy &
Astrophysic
