197 research outputs found

    Punctuation effects in English and Esperanto texts

    Full text link
    A statistical physics study of punctuation effects on sentence lengths is presented for written texts: {\it Alice in wonderland} and {\it Through a looking glass}. The translation of the first text into esperanto is also considered as a test for the role of punctuation in defining a style, and for contrasting natural and artificial, but written, languages. Several log-log plots of the sentence length-rank relationship are presented for the major punctuation marks. Different power laws are observed with characteristic exponents. The exponent can take a value much less than unity (ca.ca. 0.50 or 0.30) depending on how a sentence is defined. The texts are also mapped into time series based on the word frequencies. The quantitative differences between the original and translated texts are very minutes, at the exponent level. It is argued that sentences seem to be more reliable than word distributions in discussing an author style.Comment: 13 pages, 7 figures (3x2+1), 60 reference

    The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT

    Full text link
    The momentum plane analyticity of two point function of a relativistic thermal field theory at zero chemical potential is explored. A general principle regarding the location of the singularities is extracted. In the case of the N=4 supersymmetric Yang-Mills theory at large NcN_c, a qualitative change in the nature of the singularity (branch points versus simple poles) from the weak coupling regime to the strong coupling regime is observed with the aid of the AdS/CFT correspondence.Comment: 18 pages, 3 figures, typos fixed, 1 figure update

    ExCyto PCR Amplification

    Get PDF
    ExCyto PCR cells provide a novel and cost effective means to amplify DNA transformed into competent bacterial cells. ExCyto PCR uses host E. coli with a chromosomally integrated gene encoding a thermostable DNA polymerase to accomplish robust, hot-start PCR amplification of cloned sequences without addition of exogenous enzyme.Because the thermostable DNA polymerase is stably integrated into the bacterial chromosome, ExCyto cells can be transformed with a single plasmid or complex library, and then the expressed thermostable DNA polymerase can be used for PCR amplification. We demonstrate that ExCyto cells can be used to amplify DNA from different templates, plasmids with different copy numbers, and master mixes left on ice for up to two hours. Further, PCR amplification with ExCyto cells is comparable to amplification using commercial DNA polymerases. The ability to transform a bacterial strain and use the endogenously expressed protein for PCR has not previously been demonstrated.ExCyto PCR reduces pipetting and greatly increases throughput for screening EST, genomic, BAC, cDNA, or SNP libraries. This technique is also more economical than traditional PCR and thus broadly useful to scientists who utilize analysis of cloned DNAs in their research

    A FAIR guide for data providers to maximise sharing of human genomic data

    Get PDF
    It is generally acknowledged that, for reproducibility and progress of human genomic research, data sharing is critical. For every sharing transaction, a successful data exchange is produced between a data consumer and a data provider. Providers of human genomic data (e.g., publicly or privately funded repositories and data archives) fulfil their social contract with data donors when their shareable data conforms to FAIR (findable, accessible, interoperable, reusable) principles. Based on our experiences via Repositive (https://repositive.io), a leading discovery platform cataloguing all shared human genomic datasets, we propose guidelines for data providers wishing to maximise their shared data’s FAIRness. Citation: Corpas M, Kovalevskaya NV, McMurray A, Niel

    Acute Response of Peripheral Blood Cell to Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetic Patient

    Get PDF
    Autologous nonmyeloablative hematopoietic stem cell transplantation (AHST) was the first therapeutic approach that can improve β cell function in type 1 diabetic (T1D) patients. This study was designed to investigate the potential mechanisms involved.We applied AHST to nine T1D patients diagnosed within six months and analyzed the acute responses in peripheral blood for lymphocyte subpopulation as well as for genomic expression profiling at the six-month follow-up.We found six patients obtained insulin free (IF group) and three remained insulin dependent (ID group); C-peptide production was significantly higher in IF group compared to ID group. The acute responses in lymphocytes at six-month follow-up include declined CD3(+)CD4(+), CD3(+)CD8(+) T cell population and recovered B cell, NK cell population in both groups but with no significant differences between the two groups; most immune-related genes and pathways were up-regulated in peripheral blood mononuclear cell (PBMC) of both groups while none of transcription factors for immune regulatory component were significantly changed; the IF group demonstrated more AHST-modified genetic events than the ID group and distinct pattern of top pathways, co-expression network as well as 'hub' genes (eg, TCF7 and GZMA) were associated with each group.AHST could improve the islet function in newly diagnosed T1D patients and elimination of the islet specific autoreactive T cells might be one of the mechanisms involved; T1D patients responded differently to AHST possibly due to the distinct transcriptional events occurring in PBMC.ClinicalTrials.gov NCT00807651

    Addressing challenges in the production and analysis of illumina sequencing data

    Get PDF
    Advances in DNA sequencing technologies have made it possible to generate large amounts of sequence data very rapidly and at substantially lower cost than capillary sequencing. These new technologies have specific characteristics and limitations that require either consideration during project design, or which must be addressed during data analysis. Specialist skills, both at the laboratory and the computational stages of project design and analysis, are crucial to the generation of high quality data from these new platforms. The Illumina sequencers (including the Genome Analyzers I/II/IIe/IIx and the new HiScan and HiSeq) represent a widely used platform providing parallel readout of several hundred million immobilized sequences using fluorescent-dye reversible-terminator chemistry. Sequencing library quality, sample handling, instrument settings and sequencing chemistry have a strong impact on sequencing run quality. The presence of adapter chimeras and adapter sequences at the end of short-insert molecules, as well as increased error rates and short read lengths complicate many computational analyses. We discuss here some of the factors that influence the frequency and severity of these problems and provide solutions for circumventing these. Further, we present a set of general principles for good analysis practice that enable problems with sequencing runs to be identified and dealt with

    Confirmation of novel type 1 diabetes risk loci in families.

    Get PDF
    AIMS/HYPOTHESIS: Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study. METHODS: We genotyped the most disease-predicting single-nucleotide polymorphisms at the 18 susceptibility loci in 3,108 families and used existing genotype data for 2,319 families from the original study, providing 7,013 parent-child trios for analysis. We tested for association using the transmission disequilibrium test. RESULTS: Seventeen of the 18 susceptibility loci reached nominal levels of significance (p < 0.05) in the expanded family collection, with 14q24.1 just falling short (p = 0.055). When we allowed for multiple testing, ten of the 17 nominally significant loci reached the required level of significance (p < 2.8 × 10(-3)). All susceptibility loci had consistent direction of effects with the original study. CONCLUSIONS/INTERPRETATION: The results for the novel GWA study-identified loci are genuine and not due to population stratification. The next step, namely correlation of the most disease-associated genotypes with phenotypes, such as RNA and protein expression analyses for the candidate genes within or near each of the susceptibility regions, can now proceed
    • …
    corecore