492 research outputs found

    Adaptively Refined Hybrid FDM-RBF Meshless Scheme with Applications to Laminar and Turbulent Viscous Fluid Flows

    Get PDF
    The focus of this work is to demonstrate a novel approach to true CFD automation based on an adaptive Cartesian point distribution process coupled with a Mesh less flow solution algorithm. As Mesh less method solutions require only an underlying nodal distribution, this approach works well even for complex flow geometries with non-aligned domain boundaries. Through the addition of a so-called shadow layer of body-fitted nodes, application of boundary conditions is simplified considerably, eliminating the stair-casing issues of typical Cartesian-based techniques. This paper describes the approach taken to automatically generate the Mesh less nodal distribution, along with the details of an automatic local refinement process. Also, as the primary interest of this automated CFD solver is for aerospace applications, this work includes the development of standard two-equation turbulence models for use in this Mesh less based solver. Finally, results are shown for several relevant compressible, turbulent flows example configurations, demonstrating the benefits of the automatic refinement as well as the quality of the Mesh less solutions in high-speed flow applications

    Contributions of point defects, chemical disorder, and thermal vibrations to electronic properties of Cd1-xZnxTe alloys

    Get PDF
    We present a first-principles study based on density functional theory of thermodynamic and electronic properties of the most important intrinsic defects in the semiconductor alloy Cd1-xZnxTe with x < 0.13. The alloy is represented by a set of supercells with disorder on the Cd/Zn sublattice. Defect formation energies as well as electronic and optical transition levels are analyzed as a function of composition. We show that defect formation energies increase with Zn content with the exception of the neutral Te vacancy. This behavior is qualitatively similar to but quantitatively rather different from the effect of volumetric strain on defect properties in pure CdTe. Finally, the relative carrier scattering strengths of point defects, alloy disorder, and phonons are obtained. It is demonstrated that for realistic defect concentrations, carrier mobilities are limited by phonon scattering for temperatures above approximately 150 K

    Electronic structure of LaBr3 from quasi-particle self-consistent GW calculations

    Full text link
    Rare-earth based scintillators in general and lanthanum bromide (LaBr_3) in particular represent a challenging class of materials due to pronounced spin-orbit coupling and subtle interactions between d and f states that cannot be reproduced by standard density functional theory (DFT). Here a detailed investigation of the electronic band structure of LaBr_3 using the quasi-particle self-consistent GW (QPscGW) method is presented. This parameter-free approach is shown to yield an excellent description of the electronic structure of LaBr_3. Specifically it is able to reproduce the band gap, the correct level ordering and spacing of the 4f and 5d states, as well as the spin-orbit splitting of La-derived states. The QPscGW results are subsequently used to benchmark several computationally less demanding techniques including DFT+U, hybrid exchange-correlation functionals, and the G_0W_0 method. Spin-orbit coupling is included self-consistently at each QPscGW iteration and maximally localized Wannier functions are used to interpolate quasi-particle energies. The QPscGW results provide an excellent starting point for investigating the electronic structure of excited states, charge self-trapping, and activator ions in LaBr_3 and related materials.Comment: 8 pages, 7 figure

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts

    Full text link
    Zebrafish xenotransplantation models are increasingly applied for phenotypic drug screening to identify small compounds for precision oncology. Larval zebrafish xenografts offer the opportunity to perform drug screens at high-throughput in a complex in vivo environment. However, the full potential of the larval zebrafish xenograft model has not yet been realized and several steps of the drug screening workflow still await automation to increase throughput. Here, we present a robust workflow for drug screening in zebrafish xenografts using high-content imaging. We established embedding methods for high-content imaging of xenografts in 96-well format over consecutive days. In addition, we provide strategies for automated imaging and analysis of zebrafish xenografts including automated tumor cell detection and tumor size analysis over time. We also compared commonly used injection sites and cell labeling dyes and show specific site requirements for tumor cells from different entities. We demonstrate that our setup allows us to investigate proliferation and response to small compounds in several zebrafish xenografts ranging from pediatric sarcomas and neuroblastoma to glioblastoma and leukemia. This fast and cost-efficient assay enables the quantification of anti-tumor efficacy of small compounds in large cohorts of a vertebrate model system in vivo. Our assay may aid in prioritizing compounds or compound combinations for further preclinical and clinical investigations

    Polymorphisms in the gene regions of the adaptor complex LAMTOR2/LAMTOR3 and their association with breast cancer risk.

    Get PDF
    Background: The late endosomal LAMTOR complex serves as a convergence point for both the RAF/MEK/ERK and the PI3K/AKT/mTOR pathways. Interestingly, both of these signalling cascades play a significant role in the aetiology of breast cancer. Our aim was to address the possible role of genetic polymorphisms in LAMTOR2 and LAMTOR3 as genetic risk factors for breast cancer. Methodology/Results: We sequenced the exons and exon-intron boundaries of LAMTOR2 (p14) and LAMTOR3 (MP1) in 50 prospectively collected pairs of cancerous tissue and blood samples from breast cancer patients and compared their genetic variability. We found one single nucleotide polymorphism (SNP) in LAMTOR2 (rs7541) and two SNPs in LAMTOR3 (rs2298735 and rs148972953) in both tumour and blood samples, but no somatic mutations in cancerous tissues. In addition, we genotyped all three SNPs in 296 samples from the Risk Prediction of Breast Cancer Metastasis Study and found evidence of a genetic association between rs148972953 and oestrogen (ER) and progesterone receptor negative status (PR) (ER: OR = 3.60 (1.15-11.28); PR: OR = 4.27 (1.43-12.72)). However, when we additionally genotyped rs148972953 in the MARIE study including 2,715 breast cancer cases and 5,216 controls, we observed neither a difference in genotype frequencies between patients and controls nor was the SNP associated with ER or PR. Finally, all three SNPs were equally frequent in breast cancer samples and female participants (n = 640) of the population-based SAPHIR Study. Conclusions: The identified polymorphisms in LAMTOR2 and LAMTOR3 do not seem to play a relevant role in breast cancer. Our work does not exclude a role of other not yet identified SNPs or that the here annotated polymorphism may in fact play a relevant role in other diseases. Our results underscore the importance of replication in association studies
    corecore