19 research outputs found

    Spatiotemporal prediction of infectious diseases using structured Gaussian processes with application to Crimean-Congo hemorrhagic fever.

    No full text
    BACKGROUND:Infectious diseases are one of the primary healthcare problems worldwide, leading to millions of deaths annually. To develop effective control and prevention strategies, we need reliable computational tools to understand disease dynamics and to predict future cases. These computational tools can be used by policy makers to make more informed decisions. METHODOLOGY/PRINCIPAL FINDINGS:In this study, we developed a computational framework based on Gaussian processes to perform spatiotemporal prediction of infectious diseases and exploited the special structure of similarity matrices in our formulation to obtain a very efficient implementation. We then tested our framework on the problem of modeling Crimean-Congo hemorrhagic fever cases between years 2004 and 2015 in Turkey. CONCLUSIONS/SIGNIFICANCE:We showed that our Gaussian process formulation obtained better results than two frequently used standard machine learning algorithms (i.e., random forests and boosted regression trees) under temporal, spatial, and spatiotemporal prediction scenarios. These results showed that our framework has the potential to make an important contribution to public health policy makers

    Systematic Review and Meta-analysis of Postexposure Prophylaxis for Crimean-Congo Hemorrhagic Fever Virus among Healthcare Workers

    No full text
    We performed a systematic review and meta-analysis on the effectiveness of ribavirin use for the prevention of infection and death of healthcare workers exposed to patients with Crimean-Congo hemorrhagic fever virus (CCHFV) infection. Splashes with blood or bodily fluids (odds ratio [OR] 4.2), being a nurse or physician (OR 2.1), and treating patients who died from CCHFV infection (OR 3.8) were associated with healthcare workers acquiring CCHFV infection; 7% of the workers who received postexposure prophylaxis (PEP) with ribavirin and 89% of those who did not became infected. PEP with ribavirin reduced the odds of infection (OR 0.01, 95% CI 0–0.03), and ribavirin use <48 hours after symptom onset reduced the odds of death (OR 0.03, 95% CI 0–0.58). The odds of death increased 2.4-fold every day without ribavirin treatment. Ribavirin should be recommended as PEP and early treatment for workers at medium-to-high risk for CCHFV infection

    Antibiotic overconsumption and resistance in Turkey

    Get PDF
    WOS: 000468097700002PubMed ID: 30844434The latest report of the OECD Health Policy Studies stated that in2015 the highest rates of antimicrobial resistance (around 35% inTurkey, Korea and Greece) were seven times higher than the lowestrates among its member countries. As the OECD country with thehighest rate of resistance (38.8%), despite a 15-year hospital anti-biotic restriction programme, Turkey is in urgent need of revisingits policies and drawing an effective action plan to reverse thecurrent trend. In this commentary we review previous measurestaken to tackle antimicrobial overuse and resistance in Turkey and discuss their effectiveness

    Clinical validation of SERS metasurface SARS-CoV-2 biosensor

    No full text
    The real-Time polymerase chain reaction (RT-PCR) analysis using nasal swab samples is the gold standard approach for COVID-19 diagnosis. However, due to the high false-negative rate at lower viral loads and complex test procedure, PCR is not suitable for fast mass screening. Therefore, the need for a highly sensitive and rapid detection system based on easily collected fluids such as saliva during the pandemic has emerged. In this study, we present a surface-enhanced Raman spectroscopy (SERS) metasurface optimized with genetic algorithm (GA) to detect SARS-CoV-2 directly using unprocessed saliva samples. During the GA optimization, the electromagnetic field profiles were used to calculate the field enhancement of each structure and the fitness values to determine the performance of the generated substrates. The obtained design was fabricated using electron beam lithography, and the simulation results were compared with the test results using methylene blue fluorescence dye. After the performance of the system was validated, the SERS substrate was tested with inactivated SARS-CoV-2 virus for virus detection, viral load analysis, cross-reactivity, and variant detection using machine learning models. After the inactivated virus tests are completed, with 36 PCR positive and 33 negative clinical samples, we were able to detect the SARS-CoV-2 positive samples from Raman spectra with 95.2% sensitivity and specificity
    corecore