161 research outputs found

    Vibrational modes in nanocrystalline iron under high pressure

    Get PDF
    The phonon density of states (DOS) of nanocrystalline 57Fe was measured using nuclear resonant inelastic x-ray scattering (NRIXS) at pressures up to 28 GPa in a diamond anvil cell. The nanocrystalline material exhibited an enhancement in its DOS at low energies by a factor of 2.2. This enhancement persisted throughout the entire pressure range, although it was reduced to about 1.7 after decompression. The low-energy regions of the spectra were fitted to the function AEn, giving values of n close to 2 for both the bulk control sample and the nanocrystalline material, indicative of nearly three-dimensional vibrational dynamics. At higher energies, the van Hove singularities observed in both samples were coincident in energy and remained so at all pressures, indicating that the forces conjugate to the normal coordinates of the nanocrystalline materials are similar to the interatomic potentials of bulk crystals

    Lithostratigraphy and petrology of Lachman Crags and Cape Lachman lava-fed deltas, Ulu Peninsula, James Ross Island, north-eastern Antarctic Peninsula: Preliminary results

    Get PDF
    This paper presents the preliminary results regarding the lithostratigraphy, petrography and petrology of James Ross Island Volcanic Group dominating the Lachman Crags and Cape Lachman lava-fed deltas in the Ulu Peninsula, James Ross Island north-eastern Antarctic Peninsula. Studied lava-fed deltas were produced via Late Miocene to Pleistocene sub-marine and sub-glacial volcanism and made up four main lithofacies: a- bottomset pillow lavas, peperites and associated volcanoclastic/siliciclastic deposits; b- foreset-bedded hyaloclastite breccias; c- intrusions (feeder dykes, sills, and plugs) and d- topset subaerial lavas. Collectively these lithofacies record the transition from an effusive subaqueous to an effusive subaerial eruption environment. All lava samples and dykes from bottomset, foreset and topset lava-fed delta associations are olivine-phyric alkali basalts and are mineralogically and geochemically homogeneous. These eruptive products display significant enrichments in alkali contents and have ocean island basalt (OIB)-type, intra-plate geochemical signatures characterized by enrichments in all highly to moderately incompatible trace elements relative to basaltic rocks from ocean ridge settings. Volcanic products from a number of different eruptive periods display limited variations in major and trace element relative abundances, indicating derivation from a relatively homogeneous mantle source. The results of quantitative modelling of geochemical data is consistent with the view that the primary melts from which these mafic alkaline rocks were originated are the products of relatively small degrees (~3-7%) of partial melting of a volatile-bearing, metasomatized mantle source. The magmatism is likely the result of extension-driven mantle upwelling

    Suppression of the magnetic order in CeFeAsO: non-equivalence of hydrostatic and chemical pressure

    Get PDF
    We present a detailed investigation of the electronic properties of CeFeAsO under chemical (As by P substitution) and hydrostatic pressure by means of in-house and synchrotron M\"ossbauer spectroscopy. The Fe magnetism is suppressed due to both pressures and no magnetic order was observed above a P-substitution level of 40% or 5.2 GPa hydrostatic pressure. We compared both pressures and found that the isovalent As by P substitution change the crystallographic and electronic properties differently than hydrostatic pressure.Comment: supplement is included in the pdf fil

    Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface

    Get PDF
    The active site of cytochrome c (Cyt c) consists of a heme covalently linked to a pentapeptide segment (Cys-X-X-Cys-His), which provides a link between the heme and the protein surface, where the redox partners of Cyt c bind. To elucidate the vibrational properties of heme c, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on 57Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c 552, including 13C8-heme-, 13C 515N-Met-, and 13C15N-polypeptide (pp)-labeled samples, revealing heme-based vibrational modes in the 200- to 450-cm-1 spectral region. Simulations of the NRVS spectra of H. thermophilus cytochrome c552 allowed for a complete assignment of the Fe vibrational spectrum of the protein-bound heme, as well as the quantitative determination of the amount of mixing between local heme vibrations and pp modes from the Cys-X-XCys-His motif. These results provide the basis to propose that heme-pp vibrational dynamic couplings play a role in electron transfer (ET) by coupling vibrations of the heme directly to vibrations of the pp at the protein - protein interface. This could allow for the direct transduction of the thermal (vibrational) energy from the protein surface to the heme that is released on protein/protein complex formation, or it could modulate the heme vibrations in the protein/protein complex to minimize reorganization energy. Both mechanisms lower energy barriers for ET. Notably, the conformation of the distal Met side chain is fine-tuned in the protein to localize heme-pp mixed vibrations within the 250-to 400-cm-1 spectral region. These findings point to a particular orientation of the distal Met that maximizes ET

    Comparison of adjacent segment degeneration in patients using cervical cage and disc prosthesis in anterior cervical surgery

    Get PDF
    Aim: To examine the prevalence of adjacent segment degeneration associated with the use of cages and disc prostheses in patients who underwent cervical disc surgery via an anterior cervical approach. Methods: We retrospectively reviewed the medical records of 60 patients who underwent cervical disc surgery via an anterior cervical approach at our clinic between 2018 and 2023. The patients were divided into two groups based on the type of implant used: those with a cervical cage (Group 1) and those with a cervical disc prosthesis (Group 2). Patients' demographic and clinical details, including age, gender, smoking habits, follow-up durations, and any additional comorbid diseases, were recorded. Radiological evaluations focused on degeneration rates in the segments adjacent to where either the cage or disc prosthesis was implanted. Results: In the study comparing two groups, participants' average ages were 48.9 in Group 1 and 48.1 in Group 2 (p=0.720). Group 1 had a higher proportion of smokers (p=0.052) and more discopathy (p=0.196). In terms of disc degenerations, variations existed but were not statistically significant (p=0.259). Utilizing the Pfirrmann grading, Group 1 had more Grade III degeneration (p=0.088) and a significantly higher presence of ossification or osteophytes (p=0.038). Both groups showed high rates of adjacent segment degeneration, yet Group 1 had notably more proximal degeneration (p=0.012). Stenosis and facet hypertrophy differences were not significant (p=0.417, p=0.071). Follow-up duration averaged around 38 months for both groups (p=0.929). Conclusions: No substantial difference in the overall incidence of adjacent segment degeneration between the two procedures. Nevertheless, further large-scale and long-term studies are essential to draw comprehensive conclusions regarding the optimal surgical intervention for cervical disc ailments

    Quantized Thermoelectric Hall Effect Induces Giant Power Factor in a Topological Semimetal

    Get PDF
    Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower Sxx= 1.1x10^3 muV/K and giant power factor ~525 muW/cm/K^2 are observed at ~40K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.Comment: 54 pages total, 5 main figures + 22 supplementary figures. To appear in Nature Communications (2020

    Synthesis, Elasticity, and Spin State of an Intermediate MgSiO3‐FeAlO3 Bridgmanite: Implications for Iron in Earth’s Lower Mantle

    Full text link
    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth’s lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+‐Al3+ coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields V0 = 172.1(4) Å3, K0 = 229(4) GPa with K0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+ substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+ cations exchanged with Al3+ and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+ increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+ fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.Plain Language SummaryFe‐Al‐bearing bridgmanite may be the dominant mineral in the lower mantle, which occupies more than half of Earth’s volume. A subject of much debate is whether spin transition of Fe in bridgmanite produces an observable influence on the physics and chemistry of the lower mantle. In this study, we synthesized a new (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite with the highest Fe3+‐Al3+ coupled substitution known to date. We studied its structure, elasticity, and spin state by multiple experimental and theoretical methods. The high Fe content allowed us to better resolve a pressure‐induced spin transition of Fe3+ caused by Fe‐Al cation exchange at high temperature. Our results suggest that the spin transition is enabled by cation exchange but has a minor effect on the seismic velocity, although it may introduce chemical heterogeneity in the lower mantle. Our study helps resolve existing discrepancies on the nature of spin transition of Fe‐Al bridgmanite and its influence on the physics and chemistry of the lower mantle.Key PointsBridgmanite may contain 50% trivalent cations through Fe3+‐Al3+ coupled substitutionThe bulk sound velocity of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite is 7.7% lower than MgSiO3Through Fe‐Al cation exchange, Fe3+ in (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite undergoes gradual spin transition at lower mantle conditionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/3/jgrb54280-sup-0001-2020JB019964-SI.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/2/jgrb54280.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/1/jgrb54280_am.pd

    Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes

    Get PDF
    We previously reported the synthesis and preliminary characterization of a unique series of low-spin (ls) {FeNO}⁸⁻¹⁰ complexes supported by an ambiphilic trisphosphineborane ligand, [Fe(TPB)(NO)]^(+/0/−). Herein, we use advanced spectroscopic techniques and density functional theory (DFT) calculations to extract detailed information as to how the bonding changes across the redox series. We find that, in spite of the highly reduced nature of these complexes, they feature an NO+ ligand throughout with strong Fe−NO π-backbonding and essentially closed-shell electronic structures of their FeNO units. This is enabled by an Fe−B interaction that is present throughout the series. In particular, the most reduced [Fe(TPB)(NO)]− complex, an example of a ls-{FeNO}¹⁰ species, features a true reverse dative Fe → B bond where the Fe center acts as a strong Lewis-base. Hence, this complex is in fact electronically similar to the ls-{FeNO}⁸ system, with two additional electrons “stored” on site in an Fe−B single bond. The outlier in this series is the ls-{FeNO}⁹ complex, due to spin polarization (quantified by pulse EPR spectroscopy), which weakens the Fe−NO bond. These data are further contextualized by comparison with a related N₂ complex, [Fe(TPB)(N₂)]⁻, which is a key intermediate in Fe(TPB)-catalyzed N₂ fixation. Our present study finds that the Fe → B interaction is key for storing the electrons needed to achieve a highly reduced state in these systems, and highlights the pitfalls associated with using geometric parameters to try to evaluate reverse dative interactions, a finding with broader implications to the study of transition metal complexes with boratrane and related ligands

    Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes

    Get PDF
    We previously reported the synthesis and preliminary characterization of a unique series of low-spin (ls) {FeNO}⁸⁻¹⁰ complexes supported by an ambiphilic trisphosphineborane ligand, [Fe(TPB)(NO)]^(+/0/−). Herein, we use advanced spectroscopic techniques and density functional theory (DFT) calculations to extract detailed information as to how the bonding changes across the redox series. We find that, in spite of the highly reduced nature of these complexes, they feature an NO+ ligand throughout with strong Fe−NO π-backbonding and essentially closed-shell electronic structures of their FeNO units. This is enabled by an Fe−B interaction that is present throughout the series. In particular, the most reduced [Fe(TPB)(NO)]− complex, an example of a ls-{FeNO}¹⁰ species, features a true reverse dative Fe → B bond where the Fe center acts as a strong Lewis-base. Hence, this complex is in fact electronically similar to the ls-{FeNO}⁸ system, with two additional electrons “stored” on site in an Fe−B single bond. The outlier in this series is the ls-{FeNO}⁹ complex, due to spin polarization (quantified by pulse EPR spectroscopy), which weakens the Fe−NO bond. These data are further contextualized by comparison with a related N₂ complex, [Fe(TPB)(N₂)]⁻, which is a key intermediate in Fe(TPB)-catalyzed N₂ fixation. Our present study finds that the Fe → B interaction is key for storing the electrons needed to achieve a highly reduced state in these systems, and highlights the pitfalls associated with using geometric parameters to try to evaluate reverse dative interactions, a finding with broader implications to the study of transition metal complexes with boratrane and related ligands

    Tümör mikroçevresinde CD8’in yüksek ekspresyonu, yüksek dereceli seröz over kanserinde PD-1 ekspresyonu ve hasta sağkalımı ile ilişkilidir

    Get PDF
    Objective: The current study assesss programmed death-1 (PD-1) receptor expression and CD3, CD4, and CD8 tumor-infiltrating lymphocytes (TILs) in high-grade serous ovarian cancer (HGSOC) and to associate our results with neoadjuvant chemotherapy history and disease prognosis. Materials and Methods: We included cases diagnosed with primary HGSOC with biopsy or surgical resection materials in this study. The immunoreactivity of CD3, CD4, CD8, and PD1 was assessed immunohistochemically in tumor tissue. We analyzed TILs in two predetermined groups of high and low TIL. The relationships between clinical characteristics, PD-1, and TIL were assessed. by the χ(2) test or Fisher’s Exact test. We used Kaplan-Meier survival analysis and Cox proportional hazards regression model to the connection between survival and the amounts of TIL, and PD1. Results: Univariate analysis demonstrated that optimal debulking (p<0.001), early International Federation of Gynecology and Obstetrics stage (p=0.046), and higher scores of stromal CD8+ TIL expression (p=0.028) in tumor cells were all substantially correlated with longer disease-free survival (DFS), whereas the remaining variables analyzed, including PD-1 positivity, stromal CD3+, and CD4+ TILs, and intraepithelial CD3+, CD4+, and CD8+ TILs, were not correlated with DFS. Also, univariate analysis revealed that optimal debulking (p=0.010), and higher scores of stromal CD8+ TIL expression (p=0.021) in tumor cells were all substantially correlated with longer overall survival (OS). Conclusion: Higher scores of stromal CD8+ TILs are substantially correlated with DFS and OS in univariate analyses, whereas scores of stromal CD3+ and CD4+ TILs, and intraepithelial CD3+, CD4+, and CD8+ TILs are not correlated with DFS and OS in both univariate and multivariate analyses. Also, we found a significant association between PD-1 positivity and the scores of stromal CD3+ TILs and intraepithelial CD8+ TILs. However, no remarkable relationship was revealed between PD-1 positivity and the survival of HGSOC cases.Amaç: Çalışmamızın amacı, yüksek dereceli seröz over kanserinde (HGSOC) programlanmış ölüm-1 (PD-1) reseptör ekspresyonunu ve CD3, CD4 ve CD8 tümör infiltre edici lenfositleri (TIL) değerlendirmek ve bulgularımızın neoadjuvan kemoterapi öyküsü ve hastalık prognozu ile ilişkisini incelemektir. Gereç ve Yöntemler: Biyopsi veya cerrahi rezeksiyon materyalleri ile primer HGSOC tanısı alan olgular çalışmaya dahil edildi. CD3, CD4, CD8 ve PD1’in immünoreaktivitesi, tümör dokusunda immünohistokimyasal olarak değerlendirildi. TIL, önceden tanımlanmış iki grup olan düşük ve yüksek TIL grubunda analiz edildi. Klinik özellikler, PD-1 ve TIL arasındaki ilişkiler χ(2) testi veya Fisher’s Exact test ile değerlendirildi. TIL, PD1 ve hayatta kalma arasındaki ilişki için Kaplan-Meier hayatta kalma analizi ve Cox oransal hazard regresyon modeli kullanıldı. Bulgular: Tek değişkenli analiz, tümör hücrelerinde optimal debulking (p<0,001), erken Uluslararası Jinekoloji ve Obstetrik Federasyonu evresi (p=0,046) ve daha yüksek stromal CD8+ TIL ekspresyonu skorlarının (p=0,028) tümünün daha uzun hastalıksız sağkalım (DFS) ile önemli ölçüde ilişkili olduğunu gösterdi; oysa ki kalan değişkenler, PD-1 pozitifliği, stromal CD3+ ve CD4+ TIL’ler ve intraepitelyal CD3+, CD4+ ve CD8+ TIL’ler dahil olmak üzere, analiz edildiğinde DFS ile korele değildi. Ayrıca, tek değişkenli analiz, tümör hücrelerinde optimal debulking (p=0,010) ve daha yüksek stromal CD8+ TIL ekspresyonu skorlarının (p=0,021) tümünün daha uzun genel sağkalım (OS) ile önemli ölçüde ilişkili olduğunu ortaya koydu. Sonuç: Daha yüksek stromal CD8+ TIL skorları, tek değişkenli analizde DFS ve OS ile anlamlı şekilde ilişkiliyken, stromal CD3+ ve CD4+ TIL’lerin ve intraepitelyal CD3+, CD4+ ve CD8+ TIL’lerin skorları, hem tek değişkenli hem de çok değişkenli analizlerde DFS ve OS ile ilişkili değildi. Ayrıca, PD-1 pozitifliği ile stromal CD3+ TIL’lerin ve intraepitelyal CD8+ TIL’lerin skorları arasında anlamlı bir ilişki bulundu. Ancak, PD-1 pozitifliği ile HGSOC hastalarının sağkalımı arasında anlamlı bir ilişki gözlenmedi
    corecore