21 research outputs found

    HSP60 as a Target of Anti-Ergotypic Regulatory T Cells

    Get PDF
    The 60 kDa heat shock protein (HSP60) has been reported to influence T-cell responses in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen. Here we describe a new mechanism of T-cell immuno-regulation focused on HSP60: HSP60 is up-regulated and presented by activated T cells (HSP60 is an ergotope) to regulatory (anti-ergotypic) T cells. Presentation of HSP60 by activated T cells was found to be MHC-restricted and dependent on accessory molecules - CD28, CD80 and CD86. Anti-ergotypic T cells responded to T-cell HSP60 by proliferation and secreted IFNΞ³ and TGFΞ²1. In vitro, the anti-ergotypic T cells inhibited IFNΞ³ production by their activated T-cell targets. In vivo, adoptive transfer of an anti-ergotypic HSP60-specific T-cell line led to decreased secretion of IFNΞ³ by arthritogenic T cells and ameliorated adjuvant arthritis (AA). Thus, the presentation of HSP60 by activated T cells turns them into targets for anti-ergotypic regulatory T cells specific for HSP60. However, the direct interaction between the anti-ergotypic T regulators (anti-HSP60) and the activated T cells also down-regulated the regulators. Thus, by functioning as an ergotope, HSP60 can control both the effector T cells and the regulatory HSP60-specific T cells that control them

    A case of mistaken identity: HSPs are no DAMPs but DAMPERs

    Get PDF
    Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue

    Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Get PDF
    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician

    Hsp70 expression and induction as a readout for detection of immune modulatory components in food

    No full text
    Stress proteins such as heat shock proteins (Hsps) are up-regulated in cells in response to various forms of stress, like thermal and oxidative stress and inflammation. Hsps prevent cellular damage and increase immunoregulation by the activation of anti-inflammatory T-cells. Decreased capacity for stress-induced Hsp expression is associated with immune disorders. Thus, therapeutic boosting Hsp expression might restore or enhance cellular stress resistance and immunoregulation. Especially food- or herb-derived phytonutrients may be attractive compounds to restore optimal Hsp expression in response to stress. In the present study, we explored three readout systems to monitor Hsp70 expression in a manner relevant for the immune system and evaluated novel Hsp co-inducers. First, intracellular staining and analysis by flow cytometry was used to detect stress and/or dietary compound induced Hsp70 expression in multiple rodent cell types efficiently. This system was used to screen a panel of food-derived extracts with potent anti-oxidant capacity. This strategy yielded the identity of several new enhancers of stress-induced Hsp70 expression, among them carvacrol, found in thyme and oregano. Second, CD4+ T-cell hybridomas were generated that specifically recognized an immunodominant Hsp70 peptide. These hybridomas were used to show that carvacrol enhanced Hsp70 levels increased T-cell activation. Third, we generated a DNAJB1-luc-O23 reporter cell line to show that carvacrol increased the transcriptional activation of a heat shock promoter in the presence of arsenite. These assay systems are generally applicable to identify compounds that affect the Hsp level in cells of the immune system
    corecore