2,933 research outputs found

    From Auditable Quantum Authentication to Best-of-Both-Worlds Multiparty Quantum Computation with Public Verifiable Identifiable Abort

    Full text link
    We construct the first secure multiparty quantum computation with public verifiable identifiable abort (MPQC-PVIA) protocol, where PVIA security enables outside observers with only classical computational power to agree on the identity of a malicious party in case of an abort. Moreover, our MPQC is the first quantum setting to provide Best-of-Both-Worlds (BoBW) security, which attains full security with an honest majority and is secure with abort if the majority is dishonest. At the heart of our construction is a generic transformation called Auditable Quantum Authentication (AQA) that publicly identifies the malicious sender with overwhelming probability. Our approach comes with several advantages over the traditional way of building MPQC protocols. First, instead of following the Clifford code paradigm, our protocol can be based on a variety of authentication codes. Second, the online phase of our MPQC requires only classical communications. Third, our construction can achieve distributed computation via a carefully crafted protocol design, which can be adjusted to an MPQC that conditionally guarantees output delivery

    Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future

    Get PDF
    Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions

    Hydration dynamics at fluorinated protein surfaces

    Get PDF
    Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface

    DFT Study of Planar Boron Sheets: A New Template for Hydrogen Storage

    Get PDF
    We study the hydrogen storage properties of planar boron sheets and compare them to those of graphene. The binding of molecular hydrogen to the boron sheet (0.05 eV) is stronger than that to graphene. We find that dispersion of alkali metal (AM = Li, Na, and K) atoms onto the boron sheet markedly increases hydrogen binding energies and storage capacities. The unique structure of the boron sheet presents a template for creating a stable lattice of strongly bonded metal atoms with a large nearest neighbor distance. In contrast, AM atoms dispersed on graphene tend to cluster to form a bulk metal. In particular the boron-Li system is found to be a good candidate for hydrogen storage purposes. In the fully loaded case this compound can contain up to 10.7 wt. % molecular hydrogen with an average binding energy of 0.15 eV/H2.Comment: 19 pages, 7 figures, and 3 table

    Best-of-Both-Worlds Multiparty Quantum Computation with Publicly Verifiable Identifiable Abort

    Get PDF
    Alon et al. (CRYPTO 2021) introduced a multiparty quantum computation protocol that is secure with identifiable abort (MPQC-SWIA). However, their protocol allows only inside MPQC parties to know the identity of malicious players. This becomes problematic when two groups of people disagree and need a third party, like a jury, to verify who the malicious party is. This issue takes on heightened significance in the quantum setting, given that quantum states may exist in only a single copy. Thus, we emphasize the necessity of a protocol with publicly verifiable identifiable abort (PVIA), enabling outside observers with only classical computational power to agree on the identity of the malicious party in case of an abort. However, achieving MPQC with PVIA poses significant challenges due to the no-cloning theorem, and previous works proposed by Mahadev (STOC 2018) and Chung et al. (Eurocrypt 2022) for classical verification of quantum computation fall short. In this paper, we obtain the first MPQC-PVIA protocol assuming post-quantum oblivious transfer and a classical broadcast channel. The core component of our construction is a new authentication primitive called auditable quantum authentication (AQA) that identifies the malicious sender with overwhelming probability. Additionally, we provide the first MPQC protocol with best-of-both-worlds (BoBW) security, which guarantees output delivery with an honest majority and remains secure with abort even if the majority is dishonest. Our best-of-both-worlds MPQC protocol also satisfies PVIA upon abort

    Do mutual funds have consistency in their performance?

    Get PDF
    Using a comprehensive data set of 714 Chinese mutual funds from 2004 to 2015, the study investigates these fundsā€™ performance persistence by using the Capital Asset Pricing model, the Fama-French three-factor model and the Carhart Four-factor model. For persistence analysis, we categorize mutual funds into eight octiles based on their one year lagged performance and then observe their performance for the subsequent 12 months. We also apply Cross-Product Ratio technique to assess the performance persistence in these Chinese funds. The study finds no significant evidence of persis- tence in the performance of the mutual funds. Winner (loser) funds do not continue to be winner (loser) funds in the subsequent time period. These findings suggest that future performance of funds cannot be predicted based on their past performance.info:eu-repo/semantics/publishedVersio

    Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes.

    Get PDF
    Atrioventricular nodal reentry tachycardia (AVNRT) is the most common form of regular paroxysmal supraventricular tachycardia. This arrhythmia affects women twice as frequently as men, and is often diagnosed in patients <40 years of age. Familial clustering, early onset of symptoms and lack of structural anomaly indicate involvement of genetic factors in AVNRT pathophysiology. We hypothesized that AVNRT patients have a high prevalence of variants in genes that are highly expressed in the atrioventricular conduction axis of the heart and potentially involved in arrhythmic diseases. Next-generation sequencing of 67 genes was applied to the DNA profile of 298 AVNRT patients and 10 AVNRT family members using HaloPlex Target Enrichment System. In total, we identified 229 variants in 60 genes; 215 missenses, four frame shifts, four codon deletions, three missense and splice sites, two stop-gain variants, and one start-lost variant. Sixty-five of these were not present in the Exome Aggregation Consortium (ExAC) database. Furthermore, we report two AVNRT families with co-segregating variants. Seventy-five of 284 AVNRT patients (26.4%) and three family members to different AVNRT probands had one or more variants in genes affecting the sodium handling. Fifty-four out of 284 AVNRT patients (19.0%) had variants in genes affecting the calcium handling of the heart. We furthermore find a large proportion of variants in the HCN1-4 genes. We did not detect a significant enrichment of rare variants in the tested genes. This could be an indication that AVNRT might be an electrical arrhythmic disease with abnormal sodium and calcium handling
    • ā€¦
    corecore