980 research outputs found

    Accurate Liability Estimation Improves Power in Ascertained Case Control Studies

    Full text link
    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in non-randomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (Liability Estimator As a Phenotype, https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and demonstrate that this can lead to a substantial power increase

    Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Get PDF
    Background: Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes

    Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells

    Get PDF
    Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.Peer reviewe

    Association study with Wegener granulomatosis of the human phospholipase Cγ2 gene

    Get PDF
    BACKGROUND: Wegener Granulomatosis (WG) is a multifactorial disease of yet unknown aetiology characterized by granulomata of the respiratory tract and systemic necrotizing vasculitis. Analyses of candidate genes revealed several associations, e.g. with α(1)-antitrypsin, proteinase 3 and with the HLA-DPB1 locus. A mutation in the abnormal limb mutant 5 (ALI5) mouse in the region coding for the hydrophobic ridge loop 3 (HRL3) of the phospholipaseCγ2 (PLCγ-2) gene, corresponding to human PLCγ-2 exon 27, leads to acute and chronic inflammation and granulomatosis. For that reason, we screened exons 11, 12 and 13 coding for the hydrophobic ridge loop 1 and 2 (HRL1 and 2, respectively) and exon 27 of the PLCγ-2 protein by single strand conformation polymorphism (SSCP), sequencing and PCR/ restriction fragment length polymorphism (RFLP) analyses. In addition, we screened indirectly for disease association via 4 microsatellites with pooled DNA in the PLCγ-2 gene. RESULTS: Although a few polymorphisms in these distinct exons were observed, significant differences in allele frequencies were not identified between WG patients and respective controls. In addition, the microsatellite analyses did not reveal a significant difference between our patient and control cohort. CONCLUSION: This report does not reveal any hints for an involvement of the PLCγ-2 gene in the pathogenesis of WG in our case-control study

    Lack of MEF2A Δ7aa mutation in Irish families with early onset ischaemic heart disease, a family based study

    Get PDF
    BACKGROUND: Ischaemic heart disease (IHD) is a complex disease due to the combination of environmental and genetic factors. Mutations in the MEF2A gene have recently been reported in patients with IHD. In particular, a 21 base pair deletion (Δ7aa) in the MEF2A gene was identified in a family with an autosomal dominant pattern of inheritance of IHD. We investigated this region of the MEF2A gene using an Irish family-based study, where affected individuals had early-onset IHD. METHODS: A total of 1494 individuals from 580 families were included (800 discordant sib-pairs and 64 parent-child trios). The Δ7aa region of the MEF2A gene was investigated based on amplicon size. RESULTS: The Δ7aa mutation was not detected in any individual. Variation in the number of CAG (glutamate) and CCG (proline) residues was detected in a nearby region. However, this was not found to be associated with IHD. CONCLUSION: The Δ7aa mutation was not detected in any individual within the study population and is unlikely to play a significant role in the development of IHD in Ireland. Using family-based tests of association the number of tri-nucleotide repeats in a nearby region of the MEF2A gene was not associated with IHD in our study group

    Parenting Intervention and the Prevention of Serious Mental Health Problems in Children

    Get PDF
    The reduction of coercive or inadequate parenting is essential if the mental health status of Australian children and adolescents is to be improved. Of the available approaches that address parenting practices, behavioural family interventions have the strongest empirical support and are effective in reducing parenting practices that contribute to the development of behavioural and emotional problems in children. However, only a small proportion of parents access such interventions. A comprehensive multilevel, evidence-based parenting and family support strategy needs to be implemented on a wide scale to reduce the prevalence of mental health problems in children and youth. The Triple P – Positive Parenting Program is an example of a population-level strategy that can be used to improve the mental health status of children and their parents

    Craniodental Morphology and Systematics of a New Family of Hystricognathous Rodents (Gaudeamuridae) from the Late Eocene and Early Oligocene of Egypt

    Get PDF
    BACKGROUND: Gaudeamus is an enigmatic hystricognathous rodent that was, until recently, known solely from fragmentary material from early Oligocene sites in Egypt, Oman, and Libya. Gaudeamus' molars are similar to those of the extant cane rat Thryonomys, and multiple authorities have aligned Gaudeamus with Thryonomys to the exclusion of other living and extinct African hystricognaths; recent phylogenetic analyses have, however, also suggested affinities with South American caviomorphs or Old World porcupines (Hystricidae). METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the oldest known remains of Gaudeamus, including largely complete but crushed crania and complete upper and lower dentitions. Unlike younger Gaudeamus species, the primitive species described here have relatively complex occlusal patterns, and retain a number of plesiomorphic features. Unconstrained parsimony analysis nests Gaudeamus and Hystrix within the South American caviomorph radiation, implying what we consider to be an implausible back-dispersal across the Atlantic Ocean to account for Gaudeamus' presence in the late Eocene of Africa. An analysis that was constrained to recover the biogeographically more plausible hypothesis of caviomorph monophyly does not place Gaudeamus as a stem caviomorph, but rather as a sister taxon of hystricids. CONCLUSIONS/SIGNIFICANCE: We place Gaudeamus species in a new family, Gaudeamuridae, and consider it likely that the group originated, diversified, and then went extinct over a geologically brief period of time during the latest Eocene and early Oligocene in Afro-Arabia. Gaudeamurids are the only known crown hystricognaths from Afro-Arabia that are likely to be aligned with non-phiomorph members of that clade, and as such provide additional support for an Afro-Arabian origin of advanced stem and basal crown members of Hystricognathi

    Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    Get PDF
    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival
    corecore