66 research outputs found

    Estrogen Receptor β-Selective Agonists Stimulate Calcium Oscillations in Human and Mouse Embryonic Stem Cell-Derived Neurons

    Get PDF
    Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERα and ERβ on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERβ, but not ERα. The non-selective ER agonist 17β-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERβ agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERβ agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERβ activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERβ signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds

    Uneven Power and the Pursuit of Peace: How Regional Power Transitions Motivate Integration. CES Working Paper, no. 150, 2007

    Get PDF
    This paper addresses two related puzzles confronting students of regional and international integration: Why do states willingly pool and delegate sovereignty within international institutions? What accounts for the timing and content of regional integration agreements? Most theories of integration suggest that states integrate in order to solve problems of incomplete information and reduce transaction costs and other barriers to economic growth. In contrast I argue that integration can serve to establish a credible commitment that rules out the risk of future conflict among states of unequal power. Specifically, I suggest that integration presents an alternative to preventive war as a means to preclude a rising revisionist power from establishing a regional hegemony. The implication is that it is not countries enjoying stable and peaceful relations that are most likely to pursue integration, but rather countries that find themselves caught in a regional security dilemma, which they hope to break out of by means of institutionalized cooperation. I evaluate this proposition against evidence from two historical cases of regional integration: the German Zollverein and the European Communities

    North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    Get PDF
    Most native red foxes (Vulpes vulpes) in the western contiguous United States appear to be climatically restricted to colder regions in the major mountain ranges and, in some areas, have suffered precipitous declines in abundance that may be linked to warming trends. However, another population of unknown origin has occurred in arid habitats in the Sacramento Valley of California well outside this narrow bioclimatic niche since at least 1880. If native, this population would be ecologically distinct among indigenous North American red foxes. We used mitochondrial and microsatellite markers from historical and modern samples (modes: 1910–1930 and 2000–2008, respectively) obtained throughout the western United States to determine the origins of the Sacramento Valley red fox, and assess the historical and modern connectivity and genetic effective population sizes of Sacramento Valley and montane red foxes. We found clear and consistent evidence supporting the indigenous origin of the Sacramento Valley population, including the phylogenetic positioning of the dominant, endemic mtDNA clade and microsatellite clustering of the Sacramento Valley population with the nearest montane population. Based on both mitochondrial and microsatellite AMOVAs, connectivity among Western populations of red foxes declined substantially between historical and modern time periods. Estimates based on temporal losses in gene diversity for both marker types suggest that both the Sierra Nevada (including the Southern Cascades population) and the Sacramento Valley populations have small genetic effective population sizes. Significant heterozygote excesses also indicate the occurrence of recent bottlenecks in these populations. Both substitutions distinguishing the 2 endemic Sacramento Valley haplotypes from the dominant montane haplotype were in the coding region and nonsynonymous, consistent with adaptive differences. These findings along with previously reported body size distinctions between Sacramento Valley and montane red foxes argue for distinct subspecific status for the Sacramento Valley red fox, for which we propose the designation V. v. patwin n. subsp. The small genetic effective population size estimates for the Sierra Nevada red fox and Sacramento Valley red fox are cause for concern, as is the possibility of genetic introgression into the latter population from an adjacent, recently established nonnative population
    • …
    corecore