803 research outputs found

    Low-Density Parity-Check Codes From Transversal Designs With Improved Stopping Set Distributions

    Full text link
    This paper examines the construction of low-density parity-check (LDPC) codes from transversal designs based on sets of mutually orthogonal Latin squares (MOLS). By transferring the concept of configurations in combinatorial designs to the level of Latin squares, we thoroughly investigate the occurrence and avoidance of stopping sets for the arising codes. Stopping sets are known to determine the decoding performance over the binary erasure channel and should be avoided for small sizes. Based on large sets of simple-structured MOLS, we derive powerful constraints for the choice of suitable subsets, leading to improved stopping set distributions for the corresponding codes. We focus on LDPC codes with column weight 4, but the results are also applicable for the construction of codes with higher column weights. Finally, we show that a subclass of the presented codes has quasi-cyclic structure which allows low-complexity encoding.Comment: 11 pages; to appear in "IEEE Transactions on Communications

    Absorbing Set Analysis and Design of LDPC Codes from Transversal Designs over the AWGN Channel

    Full text link
    In this paper we construct low-density parity-check (LDPC) codes from transversal designs with low error-floors over the additive white Gaussian noise (AWGN) channel. The constructed codes are based on transversal designs that arise from sets of mutually orthogonal Latin squares (MOLS) with cyclic structure. For lowering the error-floors, our approach is twofold: First, we give an exhaustive classification of so-called absorbing sets that may occur in the factor graphs of the given codes. These purely combinatorial substructures are known to be the main cause of decoding errors in the error-floor region over the AWGN channel by decoding with the standard sum-product algorithm (SPA). Second, based on this classification, we exploit the specific structure of the presented codes to eliminate the most harmful absorbing sets and derive powerful constraints for the proper choice of code parameters in order to obtain codes with an optimized error-floor performance.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1306.511

    First principles modelling of magnesium titanium hydrides

    Get PDF
    Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table

    Drug discovery: A jump-start for electroceuticals

    Get PDF
    Imagine a day when electrical impulses are a mainstay of medical treatment. Your clinician will administer electroceuticals that target individual nerve fibres or specific brain circuits to treat an array of conditions. These will modulate the neural impulses that control the body, repair lost function and reinstate a healthy balance. They could coax insulin from islet cells, regulate food intake, and control inflammation. They may treat pressing major ailments such as hypertension, diabetes, obesity, heart failure, pulmonary and vascular disease. All this is within reach, we argue, if researchers from disparate disciplines in academia and industry work together. We herewith outline what needs to be done to bring about electroceuticals, and unveil a public-private research initiative and award that aim to catalyse the field

    Graphs in molecular biology

    Get PDF
    Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network

    Effect of fluorescent vs. poultry-specific light-emitting diode lights on production performance and egg quality of W-36 laying hens

    Get PDF
    More energy-efficient, durable, affordable, and dimmable light-emitting diode (LED) lights are finding applications in poultry production. However, data are lacking on controlled comparative studies concerning the impact of such lights during the pullet rearing and subsequent laying phase. This study evaluated two types of poultry-specific LED light (PS-LED) vs. fluorescent light (FL) with regards to their effects on hen laying performance. A total of 432 Hy-Line W-36 laying hens were tested in two batches using four environmental chambers (nine cages per chamber and 6 birds per cage) from 17 to 41 weeks of age (WOA). Dim-to-red PS-LED and warm-white FL were used in the laying phase. The hens had been reared under a dim-to-blue PS-LED or a warm-white FL from 1 to 16 WOA. The measured performance variables included 1) timing of sexual maturity, 2) egg production performance, 3) egg quality, and 4) egg yolk cholesterol. Results showed that the two types of light used during the laying phase had comparable performance responses for all response parameters (P \u3e 0.05) with a few exceptions. Specifically, eggs laid from hens in the PS-LED treatment had lower shell thickness (P = 0.01) and strength (P = 0.03) than those in the FL treatment at 41 WOA. The two types of light used during the rearing phase did not influence the 17 to 41 WOA laying performance, except that hens reared under the PS-LED laid eggs with lower shell thickness (P = 0.02) at 32 WOA as compared to hens reared under the FL. This study demonstrates that the emerging poultry-specific LED lights yield comparable production performance and egg quality of W-36 laying hens to the traditional fluorescent lights

    Sticky Gecko Feet: The Role of Temperature and Humidity

    Get PDF
    Gecko adhesion is expected to be temperature insensitive over the range of temperatures typically experienced by geckos. Previous work is limited and equivocal on whether this expectation holds. We tested the temperature dependence of adhesion in Tokay and Day geckos and found that clinging ability at 12°C was nearly double the clinging ability at 32°C. However, rather than confirming a simple temperature effect, our data reveal a complex interaction between temperature and humidity that can drive differences in adhesion by as much as two-fold. Our findings have important implications for inferences about the mechanisms underlying the exceptional clinging capabilities of geckos, including whether performance of free-ranging animals is based solely on a dry adhesive model. An understanding of the relative contributions of van der Waals interactions and how humidity and temperature variation affects clinging capacities will be required to test hypotheses about the evolution of gecko toepads and is relevant to the design and manufacture of synthetic mimics

    A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature

    Get PDF
    The first quadruple luminescent sensor is presented which enables simultaneous detection of three chemical parameters and temperature. A multi-layer material is realized and combines two spectrally independent dually sensing systems. The first layer employs ethylcellulose containing the carbon dioxide sensing chemistry (fluorescent pH indicator 8-hydroxy-pyrene-1,3,6-trisulfonate (HPTS) and a lipophilic tetraalkylammonium base). The cross-linked polymeric beads stained with a phosphorescent iridium(III) complex are also dispersed in ethylcellulose and serve both for oxygen sensing and as a reference for HPTS. The second (pH/temperature) dually sensing system relies on the use of a pH-sensitive lipophilic seminaphthorhodafluor derivative and luminescent chromium(III)-activated yttrium aluminum borate particles (simultaneously acting as a temperature probe and as a reference for the pH indicator) which are embedded in polyurethane hydrogel layer. A silicone layer is used to spatially separate both dually sensing systems and to insure permeation selectivity for the CO2/O2 layer. The CO2/O2 and the pH/temperature layers are excitable with a blue and a red LED, respectively, and the emissions are isolated with help of optical filters. The measurements are performed at two modulation frequencies for each sensing system and the modified Dual Lifetime Referencing method is used to access the analytical information. The feasibility of the simultaneous four-parameter sensing is demonstrated. However, the practical applicability of the material may be compromised by its high complexity and by the performance of individual indicators

    Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease

    Get PDF
    BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract
    • …
    corecore