287 research outputs found

    Antifouling Marine Coatings with a Potentially Safer and Sustainable Synthetic Polyphenolic Derivative

    Get PDF
    The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates the further settlement of macrofoulers. Anti-biofilm properties of a synthetic polyphenolic compound, with previously described anti-settlement activity against macrofoulers, were explored in this work. In solution this new compound was able to prevent biofilm formation and reduce a pre-formed biofilm produced by the marine bacterium, Pseudoalteromonas tunicata. Then, this compound was applied to a marine coating and the formation of P. tunicata biofilms was assessed under hydrodynamic conditions to mimic the marine environment. For this purpose, polyurethane (PU)-based coating formulations containing 1 and 2 wt.% of the compound were prepared based on a prior developed methodology. The most effective formulation in reducing the biofilm cell number, biovolume, and thickness was the PU-based coating containing an aziridine-based crosslinker and 2 wt.% of the compound. To assess the marine ecotoxicity impact of this compound, its potential to disrupt endocrine processes was evaluated through the modulation of two nuclear receptors (NRs), peroxisome proliferator-activated receptor gamma (PPAR gamma), and pregnane X receptor (PXR). Transcriptional activation of the selected NRs upon exposure to the polyphenolic compound (10 mu M) was not observed, thus highlighting the eco-friendliness towards the addressed NRs of this new dual-acting anti-macro- and anti-microfouling agent towards the addressed NRs

    A Confidence Interval for the Wallace Coefficient of Concordance and Its Application to Microbial Typing Methods

    Get PDF
    Very diverse research fields frequently deal with the analysis of multiple clustering results, which should imply an objective detection of overlaps and divergences between the formed groupings. The congruence between these multiple results can be quantified by clustering comparison measures such as the Wallace coefficient (W). Since the measured congruence is dependent on the particular sample taken from the population, there is variability in the estimated values relatively to those of the true population. In the present work we propose the use of a confidence interval (CI) to account for this variability when W is used. The CI analytical formula is derived assuming a Gaussian sampling distribution and recurring to the algebraic relationship between W and the Simpson's index of diversity. This relationship also allows the estimation of the expected Wallace value under the assumption of independence of classifications. We evaluated the CI performance using simulated and published microbial typing data sets. The simulations showed that the CI has the desired 95% coverage when the W is greater than 0.5. This behaviour is robust to changes in cluster number, cluster size distributions and sample size. The analysis of the published data sets demonstrated the usefulness of the new CI by objectively validating some of the previous interpretations, while showing that other conclusions lacked statistical support

    Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing [version 2; peer review: 2 approved]

    Get PDF
    Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work

    Generation of Trophoblast Stem Cells from Rabbit Embryonic Stem Cells with BMP4

    Get PDF
    Trophoblast stem (TS) cells are ideal models to investigate trophectoderm differentiation and placental development. Herein, we describe the derivation of rabbit trophoblast stem cells from embryonic stem (ES) cells. Rabbit ES cells generated in our laboratory were induced to differentiate in the presence of BMP4 and TS-like cell colonies were isolated and expanded. These cells expressed the molecular markers of mouse TS cells, were able to invade, give rise to derivatives of TS cells, and chimerize placental tissues when injected into blastocysts. The rabbit TS-like cells maintained self-renewal in culture medium with serum but without growth factors or feeder cells, whilst their proliferation and identity were compromised by inhibitors of FGFs and TGF-β receptors. Taken together, our study demonstrated the derivation of rabbit TS cells and suggested the essential roles of FGF and TGF-β signalings in maintenance of rabbit TS cell self-renewal

    Convergent trends and spatiotemporal patterns of Aedes-borne arboviruses in Mexico and Central America

    Get PDF
    Background Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. Methodology/Principal findings Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. Conclusions/Significance Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico’s geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration

    Static cut-points of hypertension and increased arterial stiffness in children and adolescents: The International Childhood Vascular Function Evaluation Consortium

    Get PDF
    Pediatric elevated blood pressure (BP) and hypertension are usually defined using traditional BP tables at the 90th and 95th percentiles, respectively, based on sex, age, and height, which are cumbersome to use in clinical practice. The authors aimed to assess the performance of the static cut-points (120/80 mm Hg and 130/80 mm Hg for defining elevated BP and hypertension for adolescents, respectively; and 110/70 mm Hg and 120/80 mm Hg for children, respectively) in predicting increased arterial stiffness. Using data from five population-based cross-sectional studies conducted in Brazil, China, Korea, and New Zealand, a total of 2546 children and adolescents aged 6-17 years were included. Increased arterial stiffness was defined as pulse wave velocity >= sex-specific, age-specific, and study population-specific 90th percentile. Compared to youth with normal BP, those with hypertension defined using the 2017 American Academy of Pediatrics guideline (hereafter referred to as "percentile-based cut-points") and the static cut-points were at similar risk of increased arterial stiffness, with odds ratios and 95% confidence intervals of 2.35 (1.74-3.17) and 3.07 (2.20-4.28), respectively. Area under the receiver operating characteristic curve and net reclassification improvement methods confirmed the similar performance of static cut-points and percentile-based cut-points (P for difference > .05). In conclusion, the static cut-points performed similarly well when compared with the percentile-based cut-points in predicting childhood increased arterial stiffness. Use of static cut-points to define hypertension in childhood might simplify identification of children with abnormal BP in clinical practice
    • …
    corecore