76 research outputs found

    In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H<sub>2</sub>O<sub>2 </sub>are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H<sub>2</sub>O<sub>2</sub>. Here we used conditions more like those <it>in vivo </it>to compare the effects of physiologically plausible concentrations of H<sub>2</sub>O<sub>2 </sub>and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli.</p> <p>Methods</p> <p>Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H<sub>2</sub>O<sub>2</sub>, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H<sub>2</sub>O<sub>2 </sub>and lactic acid was also measured.</p> <p>Results</p> <p>Physiological concentrations of H<sub>2</sub>O<sub>2 </sub>(< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H<sub>2</sub>O<sub>2</sub>. At 10 mM, H<sub>2</sub>O<sub>2 </sub>inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H<sub>2</sub>O<sub>2</sub>. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid.</p> <p>Conclusions</p> <p>Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H<sub>2</sub>O<sub>2 </sub>produced no detectable inactivation of either BV-associated bacteria or vaginal lactobacilli. Moreover, at very high concentrations, H<sub>2</sub>O<sub>2 </sub>was more toxic to vaginal lactobacilli than to BV-associated bacteria. On the basis of these <it>in vitro </it>observations, we conclude that lactic acid, not H<sub>2</sub>O<sub>2</sub>, is likely to suppress BV-associated bacteria <it>in vivo</it>.</p

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV

    Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity

    Get PDF
    Persistent infection with oncogenic Human Papillomavirus (HPV) is necessary for cervical carcinogenesis. Although evidence suggests that the vaginal microbiome plays a functional role in the persistence or regression of HPV infections, this has yet to be described in women with cervical intra-epithelial neoplasia (CIN). We hypothesised that increasing microbiome diversity is associated with increasing CIN severity. llumina MiSeq sequencing of 16S rRNA gene amplicons was used to characterise the vaginal microbiota of women with low-grade squamous intra-epithelial lesions (LSIL; n = 52), high-grade (HSIL; n = 92), invasive cervical cancer (ICC; n = 5) and healthy controls (n = 20). Hierarchical clustering analysis revealed an increased prevalence of microbiomes characterised by high-diversity and low levels of Lactobacillus spp. (community state type-CST IV) with increasing disease severity, irrespective of HPV status (Normal = 2/20,10%; LSIL = 11/52,21%; HSIL = 25/92,27%; ICC = 2/5,40%). Increasing disease severity was associated with decreasing relative abundance of Lactobacillus spp. The vaginal microbiome in HSIL was characterised by higher levels of Sneathia sanguinegens (P < 0.01), Anaerococcus tetradius (P < 0.05) and Peptostreptococcus anaerobius (P < 0.05) and lower levels of Lactobacillus jensenii (P < 0.01) compared to LSIL. Our results suggest advancing CIN disease severity is associated with increasing vaginal microbiota diversity and may be involved in regulating viral persistence and disease progression

    Comparison of Storage Conditions for Human Vaginal Microbiome Studies

    Get PDF
    BACKGROUND: The effect of storage conditions on the microbiome and metabolite composition of human biological samples has not been thoroughly investigated as a potential source of bias. We evaluated the effect of two common storage conditions used in clinical trials on the bacterial and metabolite composition of the vaginal microbiota using pyrosequencing of barcoded 16S rRNA gene sequencing and (1)H-NMR analyses. METHODOLOGY/PRINCIPAL FINDINGS: Eight women were enrolled and four mid-vaginal swabs were collected by a physician from each woman. The samples were either processed immediately, stored at -80°C for 4 weeks or at -20°C for 1 week followed by transfer to -80°C for another 4 weeks prior to analysis. Statistical methods, including Kolmogorovo-Smirnov and Wilcoxon tests, were performed to evaluate the differences in vaginal bacterial community composition and metabolites between samples stored under different conditions. The results showed that there were no significant differences between samples processed immediately after collection or stored for varying durations. (1)H-NMR analysis of the small molecule metabolites in vaginal secretions indicated that high levels of lactic acid were associated with Lactobacillus-dominated communities. Relative abundance of lactic acid did not appear to correlate with relative abundance of individual Lactobacillus sp. in this limited sample, although lower levels of lactic acid were observed when L. gasseri was dominant, indicating differences in metabolic output of seemingly similar communities. CONCLUSIONS/SIGNIFICANCE: These findings benefit large-scale, field-based microbiome and metabolomic studies of the vaginal microbiota

    Phase I Randomised Clinical Trial of an HIV-1CN54, Clade C, Trimeric Envelope Vaccine Candidate Delivered Vaginally

    Get PDF
    We conducted a phase 1 double-blind randomised controlled trial (RCT) of a HIV-1 envelope protein (CN54 gp140) candidate vaccine delivered vaginally to assess immunogenicity and safety. It was hypothesised that repeated delivery of gp140 may facilitate antigen uptake and presentation at this mucosal surface. Twenty two healthy female volunteers aged 18–45 years were entered into the trial, the first receiving open-label active product. Subsequently, 16 women were randomised to receive 9 doses of 100 µg of gp140 in 3 ml of a Carbopol 974P based gel, 5 were randomised to placebo solution in the same gel, delivered vaginally via an applicator. Participants delivered the vaccine three times a week over three weeks during one menstrual cycle, and were followed up for two further months. There were no serious adverse events, and the vaccine was well tolerated. No sustained systemic or local IgG, IgA, or T cell responses to the gp140 were detected following vaginal immunisations. Repeated vaginal immunisation with a HIV-1 envelope protein alone formulated in Carbopol gel was safe, but did not induce local or systemic immune responses in healthy women

    SPL7013 Gel (VivaGel®) Retains Potent HIV-1 and HSV-2 Inhibitory Activity following Vaginal Administration in Humans

    Get PDF
    SPL7013 Gel (VivaGel®) is a microbicide in development for prevention of HIV and HSV. This clinical study assessed retention and duration of antiviral activity following vaginal administration of 3% SPL7013 Gel in healthy women. Participants received 5 single doses of product with ≥5 days between doses. A cervicovaginal fluid (CVF) sample was collected using a SoftCup™ pre-dose, and immediately, or 1, 3, 12 or 24 h post-dose. HIV-1 and HSV-2 antiviral activities of CVF samples were determined in cell culture assays. Antiviral activity in the presence of seminal plasma was also tested. Mass and concentration of SPL7013 in CVF samples was determined. Safety was assessed by reporting of adverse events. Statistical analysis was performed using the Wilcoxon signed-rank test with Bonferroni adjustment; p≤0.003 was significant. Eleven participants completed the study. Inhibition of HIV-1 and HSV-2 by pre-dose CVF samples was negligible. CVF samples obtained immediately after dosing almost completely inhibited (median, interquartile range) HIV-1 [96% (95,97)] and HSV-2 [86% (85,94)], and activity was maintained in all women at 3 h (HIV-1 [96% (95,98), p = 0.9]; HSV-2 [94% (91,97), p = 0.005]). At 24 h, >90% of initial HIV-1 and HSV-2 inhibition was maintained in 6/11 women. SPL7013 was recovered in CVF samples obtained at baseline (46% of 105 mg dose). At 3 and 24 h, 22 mg and 4 mg SPL7013, respectively, were recovered. More than 70% inhibition of HIV-1 and HSV-2 was observed if there was >0.5 mg SPL7013 in CVF samples. High levels of antiviral activity were retained in the presence of seminal plasma. VivaGel was well tolerated with no signs or symptoms of vaginal, vulvar or cervical irritation reported. Potent antiviral activity was observed against HIV-1 and HSV-2 immediately following vaginal administration of VivaGel, with activity maintained for at least 3 h post-dose. The data provide evidence of antiviral activity in a clinical setting, and suggest VivaGel could be administered up to 3 h before coitus

    Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale

    Get PDF
    The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 µm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter. Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier properties of mucus, and how the penetration of foreign particles across mucus might be inhibited

    Cutaneous Bacteria of the Redback Salamander Prevent Morbidity Associated with a Lethal Disease

    Get PDF
    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an infectious disease that causes population declines of many amphibians. Cutaneous bacteria isolated from redback salamanders, Plethodon cinereus, and mountain yellow-legged frogs, Rana muscosa, inhibit the growth of Bd in vitro. In this study, the bacterial community present on the skin of P. cinereus individuals was investigated to determine if it provides protection to salamanders from the lethal and sub-lethal effects of chytridiomycosis. When the cutaneous bacterial community was reduced prior to Bd exposure, salamanders experienced a significantly greater decrease in body mass, which is a symptom of the disease, when compared to infected individuals with a normal bacterial community. In addition, a greater proportion of infected individuals with a reduced bacterial community experienced limb-lifting, a behavior seen only in infected individuals. Overall, these results demonstrate that the cutaneous bacterial community of P. cinereus provides protection to the salamander from Bd and that alteration of this community can change disease resistance. Therefore, symbiotic microbes associated with this species appear to be an important component of its innate skin defenses

    The epidemiology of bacterial vaginosis in relation to sexual behaviour

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial vaginosis (BV) has been most consistently linked to sexual behaviour, and the epidemiological profile of BV mirrors that of established sexually transmitted infections (STIs). It remains a matter of debate however whether BV pathogenesis does actually involve sexual transmission of pathogenic micro-organisms from men to women. We therefore made a critical appraisal of the literature on BV in relation to sexual behaviour.</p> <p>Discussion</p> <p><it>G. vaginalis </it>carriage and BV occurs rarely with children, but has been observed among adolescent, even sexually non-experienced girls, contradicting that sexual transmission is a necessary prerequisite to disease acquisition. <it>G. vaginalis </it>carriage is enhanced by penetrative sexual contact but also by non-penetrative digito-genital contact and oral sex, again indicating that sex <it>per se</it>, but not necessarily coital transmission is involved. Several observations also point at female-to-male rather than at male-to-female transmission of <it>G. vaginalis</it>, presumably explaining the high concordance rates of <it>G. vaginalis </it>carriage among couples. Male antibiotic treatment has not been found to protect against BV, condom use is slightly protective, whereas male circumcision might protect against BV. BV is also common among women-who-have-sex-with-women and this relates at least in part to non-coital sexual behaviours. Though male-to-female transmission cannot be ruled out, overall there is little evidence that BV acts as an STD. Rather, we suggest BV may be considered a sexually enhanced disease (SED), with frequency of intercourse being a critical factor. This may relate to two distinct pathogenetic mechanisms: (1) in case of unprotected intercourse alkalinisation of the vaginal niche enhances a shift from lactobacilli-dominated microflora to a BV-like type of microflora and (2) in case of unprotected and protected intercourse mechanical transfer of perineal enteric bacteria is enhanced by coitus. A similar mechanism of mechanical transfer may explain the consistent link between non-coital sexual acts and BV. Similar observations supporting the SED pathogenetic model have been made for vaginal candidiasis and for urinary tract infection.</p> <p>Summary</p> <p>Though male-to-female transmission cannot be ruled out, overall there is incomplete evidence that BV acts as an STI. We believe however that BV may be considered a <it>sexually enhanced disease</it>, with frequency of intercourse being a critical factor.</p
    corecore