7 research outputs found

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    Full text link
    The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed. © 2018, The Ecological Society of Japan

    Element Case Studies: Nickel

    No full text
    Initial experiments using Mediterranean Ni-hyperaccumulator plants for the purpose of phytomining were carried out in the 1990s. In order to meet commercial phytoextraction requirements, a technology has been developed using hyperaccumulator species with adapted intensive agronomic practices on natural Ni-rich soils. Ultramafic soils in the Balkans display a great variability in Ni concentrations and available Ni levels, both in Albania and the Pindus Mountains of Greece. In Albania, Vertisols are currently being used for low-productivity agriculture (pasture or arable land) on which phytomining could be included in cropping practices. Alyssum murale occurs widely on these ultramafic Vertisols and is a spontaneous weed that grows among other crops. This review chapter presents the different steps that were investigated during the study of soil suitability, and selection of plants up to optimization of agronomic practices, at field scale, as recently developed to reach the implementation stage of Ni agromining in Albania. During a 7-year study we addressed the following questions: (i) what are the optimal soils for Ni agromining in terms of fertility and Ni availability? (ii) what is the phytoextraction potential of local populations of Ni hyperaccumulator species? (iii) what should be the agronomical practices used to optimize the cropping of A. murale for extensive phytomining adapted to a Balkan agricultural setting

    Metal hyperaccumulating Brassicaceae from the ultramafic area of Yahyalı in Kayseri province, Turkey

    No full text
    Many of the plants found in serpentine areas are endemics and they may accumulate Ni at high concentration. High accumulation of Cr is rare, or in some views, never properly demonstrated. Generally, a very small proportion of any serpentine flora shows high accumulation of Ni, in some serpentine areas Ni accumulators are completely absent. There are approximately 570 hyperaccumulator plant species found on earth, 450 of them are Ni hyperaccumulators. A few of the Ni accumulators have potential for phytoremediation or phytomining. In the present study, 19 different Brassicaceae members growing in serpentine habitats in the district of Yahyalı, Kayseri province, Turkey viz., members of genera Aethionema, Alyssum, Arabis, Heldreichia, Hesperis, Iberis, Isatis, Microthlaspi, Odontarrhena, Pseudosempervivum and Thlaspi were investigated. Nickel concentrations in the soil and underground and aboveground parts of plants were determined by using ICP-OES. It was observed that Ni concentrations of seven taxa (Odontarrhena muralis, O. oxycarpa, Isatis cappadocica subsp. cappadocica, Microthlaspi perfoliatum, Pseudosempervivum sempervivum, Thlaspi triangulare, Thlaspi rosulare) reach the threshold criterion of 1,000 mg kg−1 for Ni hyperaccumulation. In this study Ni concentrations in aboveground tissues of I. cappadocica subsp. cappadocica are determined as 5,587 mg kg−1 (in dry weight). Accordingly, it is suggested that this taxon be added to the list of Ni hyperaccumulator plants

    Global Distribution and Ecology of Hyperaccumulator Plants

    No full text
    A large body of analytical data is available on the inorganic composition of many thousands of plant species, for which typical concentration ranges have been tabulated for major, minor, and trace elements. These elements include those that have been shown essential for plant growth, as well as others that lack this status, at least universally. Metalliferous soils, having abnormally high concentrations of some of the elements that are generally present only at minor (e.g. 200–2000 μg g−1) or trace (e.g. 0.1–200 μg g−1) levels, vary widely in their effects on plants and have attracted increasing attention during the last 50 years. The effects depend on the species, the relevant elements, and soil characteristics that influence the availability of metals to plants. Some of these soils are toxic to all or most higher plants. Others have hosted the development of specialized plant communities consisting of a restricted and locally characteristic range of metal-tolerant species. These plants often show a slightly elevated concentration of the elements with which the soil is enriched, but in places a species exhibits extreme accumulation of one or more of these elements, to a concentration level that may be hundreds or even thousands of times greater than that usually found in plants on the most common soils. These plants, now widely referred to as hyperaccumulators, are a remarkable resource for many types of fundamental scientific investigation (plant systematics, ecophysiology, biochemistry, genetics, and molecular biology) and for applications such as phytoremediation and agromining, and are discussed in detail below

    Global Distribution and Ecology of Hyperaccumulator Plants

    No full text
    International audienceA large body of analytical data is available on the inorganic composition of many thousands of plant species, for which typical concentration ranges have been tabulated for major, minor, and trace elements. These elements include those that have been shown essential for plant growth, as well as others that lack this status, at least universally. Metalliferous soils, having abnormally high concentrations of some of the elements that are generally present only at minor (e.g. 200–2000 μg g−1) or trace (e.g. 0.1–200 μg g−1) levels, have attracted increasing attention during the last 50 years. The effects vary widely, depending on the species, the relevant elements, and soil characteristics that collectively influence the availability of metals to plants. Some of these soils are toxic to all or most higher plants. Others have hosted the development of specialized plant communities consisting of a restricted and locally characteristic range of metal-tolerant species. These typically show a slightly elevated concentration of the elements with which the soil is enriched, but in places a species may exhibit extreme accumulation of one or more of these elements, to a concentration level that can be hundreds or even thousands of times greater than that usually found in plants on the most common soils. These plants, now widely referred to as hyperaccumulators, are a remarkable resource for many types of fundamental scientific investigation (plant systematics, ecophysiology, biochemistry, genetics and molecular biology) and for applications such as phytoremediation and agromining. Systematic analysis of herbarium specimens by X-ray Fluorescence, combined with auxiliary collection data, can provide insights into phylogenetic patterns of hyperaccumulation, and has the potential to complement and add insights to biogeographical and phylogenetic studies

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    No full text
    corecore