164 research outputs found

    Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products

    Get PDF
    We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of reads al- lowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-organism derived species variants, an ob- servation that has significant implications for sequence clustering of similar high-throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is taxonomically informative; these include the V3, V5 regions of the bac- terial 16S rRNA genes and the eukaryotic V9 region that is gaining popularity for sampling protist diversity.Comment: 28 pages, 13 figure

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years

    Get PDF
    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention

    Many Neglected Tropical Diseases May Have Originated in the Paleolithic or Before: New Insights from Genetics

    Get PDF
    The standard view of modern human infectious diseases is that many of them arose during the Neolithic when animals were first domesticated, or afterwards. Here we review recent genetic and molecular clock estimates that point to a much older Paleolithic origin (2.5 million years ago to 10,000 years ago) of some of these diseases. During part of this ancient period our early human ancestors were still isolated in Africa. We also discuss the need for investigations of the origin of these diseases in African primates and other animals that have been the original source of many neglected tropical diseases

    Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    Get PDF
    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation

    Evidence That Mutation Is Universally Biased towards AT in Bacteria

    Get PDF
    Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content

    Folic acid supplementation before and during pregnancy in the Newborn Epigenetics STudy (NEST)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folic acid (FA) added to foods during fortification is 70-85% bioavailable compared to 50% of folate occurring naturally in foods. Thus, if FA supplements also are taken during pregnancy, both mother and fetus can be exposed to FA exceeding the Institute of Medicine's recommended tolerable upper limit (TUL) of 1,000 micrograms per day (μg/d) for adult pregnant women. The primary objective is to estimate the proportion of women taking folic acid (FA) doses exceeding the TUL before and during pregnancy, and to identify correlates of high FA use.</p> <p>Methods</p> <p>During 2005-2008, pre-pregnancy and pregnancy-related data on dietary supplementation were obtained by interviewing 539 pregnant women enrolled at two obstetrics-care facilities in Durham County, North Carolina.</p> <p>Results</p> <p>Before pregnancy, 51% of women reported FA supplementation and 66% reported this supplementation during pregnancy. Before pregnancy, 11.9% (95% CI = 9.2%-14.6%) of women reported supplementation with FA doses above the TUL of 1,000 μg/day, and a similar proportion reported this intake prenatally. Before pregnancy, Caucasian women were more likely to take FA doses above the TUL (OR = 2.99; 95% = 1.28-7.00), compared to African American women, while women with chronic conditions were less likely to take FA doses above the TUL (OR = 0.48; 95%CI = 0.21-0.97). Compared to African American women, Caucasian women were also more likely to report FA intake in doses exceeding the TUL during pregnancy (OR = 5.09; 95%CI = 2.07-12.49).</p> <p>Conclusions</p> <p>Fifty-one percent of women reported some FA intake before and 66% during pregnancy, respectively, and more than one in ten women took FA supplements in doses that exceeded the TUL. Caucasian women were more likely to report high FA intake. A study is ongoing to identify possible genetic and non-genotoxic effects of these high doses.</p

    nocoRNAc: Characterization of non-coding RNAs in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.</p> <p>Results</p> <p>We present <smcaps>NOCO</smcaps>RNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. <smcaps>NOCO</smcaps>RNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and <smcaps>NOCO</smcaps>RNAc to the genome of <it>Streptomyces coelicolor </it>and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.</p> <p>Conclusions</p> <p>We have developed <smcaps>NOCO</smcaps>RNAc, a framework that facilitates the automated characterization of functional ncRNAs. <smcaps>NOCO</smcaps>RNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. <smcaps>NOCO</smcaps>RNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at <url>http://www.zbit.uni-tuebingen.de/pas/nocornac.htm</url>.</p
    • …
    corecore