44 research outputs found

    Notes on Matter in Horava-Lifshitz Gravity

    Full text link
    We investigate the dynamics of a scalar field governed by the Lifshitz-type action which should appear naturally in Horava-Lifshitz gravity. The wave of the scalar field may propagate with any speed without an upper bound. To preserve the causality, the action cannot have a generic form. Due to the superluminal propagation, a formation of a singularity may cause the breakdown of the predictability of the theory. To check whether such a catastrophe could occur in Horava-Lifshitz gravity, we investigate the dynamics of a dust. It turns out that the dust does not collapse completely to form a singularity in a generic situation, but expands again after it attains a maximum energy density.Comment: 14 pages, references adde

    3D N=6 Gauged Supergravity: Admissible Gauge Groups, Vacua and RG Flows

    Full text link
    We study N=6 gauged supergravity in three dimensions with scalar manifolds SU(4,k)S(U(4)×U(k))\frac{SU(4,k)}{S(U(4)\times U(k))} for k=1,2,3,4k=1,2,3,4 in great details. We classify some admissible non-compact gauge groups which can be consistently gauged and preserve all supersymmetries. We give the explicit form of the embedding tensors for these gauge groups as well as study their scalar potentials on the full scalar manifold for each value of k=1,2,3,4k=1,2,3,4 along with the corresponding vacua. Furthermore, the potentials for the compact gauge groups, SO(p)×SO(6−p)×SU(k)×U(1)SO(p)\times SO(6-p)\times SU(k)\times U(1) for p=3,4,5,6p=3,4,5,6, identified previously in the literature are partially studied on a submanifold of the full scalar manifold. This submanifold is invariant under a certain subgroup of the corresponding gauge group. We find a number of supersymmetric AdS vacua in the case of compact gauge groups. We then consider holographic RG flow solutions in the compact gauge groups SO(6)×SU(4)×U(1)SO(6)\times SU(4)\times U(1) and SO(4)×SO(2)×SU(4)×U(1)SO(4)\times SO(2)\times SU(4)\times U(1) for the k=4 case. The solutions involving one active scalar can be found analytically and describe operator flows driven by a relevant operator of dimension 3/2. For non-compact gauge groups, we find all types of vacua namely AdS, Minkowski and dS, but there is no possibility of RG flows in the AdS/CFT sense for all gauge groups considered here.Comment: 43 pages, no figures references added, typoes corrected and more information adde

    Particle Kinematics in Horava-Lifshitz Gravity

    Full text link
    We study the deformed kinematics of point particles in the Horava theory of gravity. This is achieved by considering particles as the optical limit of fields with a generalized Klein-Gordon action. We derive the deformed geodesic equation and study in detail the cases of flat and spherically symmetric (Schwarzschild-like) spacetimes. As the theory is not invariant under local Lorenz transformations, deviations from standard kinematics become evident even for flat manifolds, supporting superluminal as well as massive luminal particles. These deviations from standard behavior could be used for experimental tests of this modified theory of gravity.Comment: Added references, corrected a typing erro

    Janus Black Holes

    Get PDF
    In this paper Janus black holes in AdS3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ black hole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.Comment: 28 pages, 2 figures, reference adde

    Bosonic Fractionalisation Transitions

    Full text link
    At finite density, charge in holographic systems can be sourced either by explicit matter sources in the bulk or by bulk horizons. In this paper we find bosonic solutions of both types, breaking a global U(1) symmetry in the former case and leaving it unbroken in the latter. Using a minimal bottom-up model we exhibit phase transitions between the two cases, under the influence of a relevant operator in the dual field theory. We also embed solutions and transitions of this type in M-theory, where, holding the theory at constant chemical potential, the cohesive phase is connected to a neutral phase of Schr\"odinger type via a z=2 QCP.Comment: references added. minor changes. version published in JHE

    Non-Abelian T-duality and consistent truncations in type-II supergravity

    Get PDF
    For a general class of SO(4) symmetric backgrounds in type II-supergravity, we show that the action of non-Abelian T-duality can be described via consistent truncation to seven dimensional theories with seemingly massive modes. As such, any solution to these theories uplifts to both massive type IIA and IIB supergravities presenting an invertible map between the two. For supersymmetric backgrounds, we show that for spinors transforming under SO(4) the non-Abelian T-duality transformation breaks the original supersymmetry by half. We use these mappings to generate the non-Abelian T-duals of the maximally supersymmetric pp-wave, the Lin, Lunin, Maldacena geometries and spacetimes with Lifshitz symmetry.Comment: 41 pages, references added, published versio

    Emergent Schrodinger geometries from mass-deformed CFT

    Get PDF
    We study an M-theory solution for the holographic flow of AdS4 times Sasaki-Einstein 7-manifolds with skew-whiffing, perturbed by a mass operator. The infrared solution contains the 5 dimensional Schrodinger geometry after considering the gravity dual of the standard non-relativistic limit of relativistic field theories. The mass deformation of the field theory is discussed in detail for the case with 7 manifold being a round sphere.Comment: 20 pages, 1 figure. v2: references added, minor correction

    Consistent truncation of d = 11 supergravity on AdS_4 x S^7

    Full text link
    We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio

    Four-Dimensional SCFTs from M5-Branes

    Full text link
    We engineer a large new set of four-dimensional N=1 superconformal field theories by wrapping M5-branes on complex curves. We present new supersymmetric AdS_5 M-theory backgrounds which describe these fixed points at large N, and then directly construct the dual four-dimensional CFTs for a certain subset of these solutions. Additionally, we provide a direct check of the central charges of these theories by using the M5-brane anomaly polynomial. This is a companion paper which elaborates upon results reported in arXiv:1112:5487.Comment: 45 pages, 11 figure

    Enhanced Supersymmetry of Nonrelativistic ABJM Theory

    Full text link
    We study the supersymmetry enhancement of nonrelativistic limits of the ABJM theory for Chern-Simons level k=1,2k=1,2. The special attention is paid to the nonrelativistic limit (known as `PAAP' case) containing both particles and antiparticles. Using supersymmetry transformations generated by the monopole operators, we find additional 2 kinematical, 2 dynamical, and 2 conformal supercharges for this case. Combining with the original 8 kinematical supercharges, the total number of supercharges becomes maximal: 14 supercharges, like in the well-known PPPP limit. We obtain the corresponding super Schr\"odinger algebra which appears to be isomorphic to the one of the PPPP case. We also discuss the role of monopole operators in supersymmetry enhancement and partial breaking of supersymmetry in nonrelativistic limit of the ABJM theory.Comment: 22 pages, references added, version to appear in JHE
    corecore