856 research outputs found

    An investigation on the Acceptance of Facebook by Travellers for Travel Planning

    Get PDF
    Due to the emergence of social media and web 2.0 applications within the last few years, tourists' travel behaviour and decision-making changed. This study investigates tourists' behavioural intentions to use Facebook for travel planning purposes. To address this objective, a combination of survey and 19 interviews provided qualitative and quantitative data. Results indicated that Information search, Sharing travel experiences and Trust were the main determinants of intention to use Facebook. In particular, travellers view Facebook as a tourism information source, they are more willing to share their experiences on their own profile rather than a providers page and that they trust other tourism related sites more than Facebook. Practical and theoretical implications are discussed

    Erasure entropies and Gibbs measures

    Full text link
    Recently Verdu and Weissman introduced erasure entropies, which are meant to measure the information carried by one or more symbols given all of the remaining symbols in the realization of the random process or field. A natural relation to Gibbs measures has also been observed. In his short note we study this relation further, review a few earlier contributions from statistical mechanics, and provide the formula for the erasure entropy of a Gibbs measure in terms of the corresponding potentia. For some 2-dimensonal Ising models, for which Verdu and Weissman suggested a numerical procedure, we show how to obtain an exact formula for the erasure entropy. lComment: 1o pages, to appear in Markov Processes and Related Field

    Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie-Weiss model

    Get PDF
    We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics ("infinite-temperature" dynamics). We show that, in this setup, the program outlined in van Enter, Fern\'andez, den Hollander and Redig can be fully completed, namely that Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the magnetization conditioned on their endpoint. As a consequence, we show that the time-evolved model is non-Gibbs if and only if this set is not a singleton for some value of the final magnetization. A detailed description of the possible scenarios of bifurcation is given, leading to a full characterization of passages from Gibbs to non-Gibbs -and vice versa- with sharp transition times (under the dynamics Gibbsianness can be lost and can be recovered). Our analysis expands the work of Ermolaev and Kulske who considered zero magnetic field and finite-temperature spin-flip dynamics. We consider both zero and non-zero magnetic field but restricted to infinite-temperature spin-flip dynamics. Our results reveal an interesting dependence on the interaction parameters, including the presence of forbidden regions for the optimal trajectories and the possible occurrence of overshoots and undershoots in the optimal trajectories. The numerical plots provided are obtained with the help of MATHEMATICA.Comment: Key words and phrases: Curie-Weiss model, spin-flip dynamics, Gibbs vs. non-Gibbs, dynamical transition, large deviations, action integral, bifurcation of rate functio

    A remark on the notion of robust phase transitions

    Get PDF
    We point out that the high-q Potts model on a regular lattice at its transition temperature provides an example of a non-robust - in the sense recently proposed by Pemantle and Steif- phase transition

    Scaling and Inverse Scaling in Anisotropic Bootstrap percolation

    Full text link
    In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.Comment: Contribution to the proceedings of the 2013 EURANDOM workshop Probabilistic Cellular Automata: Theory, Applications and Future Perspectives, equation typo corrected, constant of generalisation correcte

    Dynamical versus diffraction spectrum for structures with finite local complexity

    Get PDF
    It is well-known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings. The connection is rather well understood when the spectrum is pure point, where the two spectral notions are essentially equivalent. In general, however, the dynamical spectrum is richer. Here, we consider (uniquely) ergodic systems of finite local complexity and establish the equivalence of the dynamical spectrum with a collection of diffraction spectra of the system and certain factors. This equivalence gives access to the dynamical spectrum via these diffraction spectra. It is particularly useful as the diffraction spectra are often simpler to determine and, in many cases, only very few of them need to be calculated.Comment: 27 pages; some minor revisions and improvement

    On the prevalence of non-Gibbsian states in mathematical physics

    Get PDF
    Gibbs measures are the main object of study in equilibrium statistical mechanics, and are used in many other contexts, including dynamical systems and ergodic theory, and spatial statistics. However, in a large number of natural instances one encounters measures that are not of Gibbsian form. We present here a number of examples of such non-Gibbsian measures, and discuss some of the underlying mathematical and physical issues to which they gave rise

    Nonexistence of random gradient Gibbs measures in continuous interface models in d=2d=2

    Get PDF
    We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d=2d=2, while there are ``gradient Gibbs measures'' describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d=2d=2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d=3d=3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.Comment: Published in at http://dx.doi.org/10.1214/07-AAP446 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Concentration Inequalities for Functions of Gibbs Fields with Application to Diffraction and Random Gibbs Measures

    Get PDF
    We derive useful general concentration inequalities for functions of Gibbs fields in the uniqueness regime. We also consider expectations of random Gibbs measures that depend on an additional disorder field, and prove concentration w.r.t. the disorder field. Both fields are assumed to be in the uniqueness regime, allowing in particular for non-independent disorder fields. The modification of the bounds compared to the case of an independent field can be expressed in terms of constants that resemble the Dobrushin contraction coefficient, and are explicitly computable. On the basis of these inequalities, we obtain bounds on the deviation of a diffraction pattern created by random scatterers located on a general discrete point set in Euclidean space, restricted to a finite volume. Here we also allow for thermal dislocations of the scatterers around their equilibrium positions. Extending recent results for independent scatterers, we give a universal upper bound on the probability of a deviation of the random scattering measures applied to an observable from its mean. The bound is exponential in the number of scatterers with a rate that involves only the minimal distance between points in the point set.

    On Random Field Induced Ordering in the Classical XY Model

    Full text link
    Consider the classical XY model in a weak random external field pointing along the YY axis with strength ϵ\epsilon. We study the behavior of this model as the range of the interaction is varied. We prove that in any dimension d2d \geq 2 and for all ϵ\epsilon sufficiently small, there is a range L=L(ϵ)L=L(\epsilon) so that whenever the inverse temperature β\beta is larger than some β(ϵ)\beta(\epsilon), there is strong residual ordering along the XX direction.Comment: 30 page
    corecore