8 research outputs found

    IGF2 is a potential factor in RAI-refractory differentiated thyroid cancer

    Get PDF
    Differentiated thyroid cancer (DTC) is the most frequent endocrine tumor with a good prognosis after primary treatment in most cases. By contrast, 30-40% of patients with metastatic DTC are unresponsive to I-131 radioactive iodide (RAI) treatment due to tumor dedifferentiation. Currently, underlying molecular mechanisms of dedifferentiation remain elusive and predictive biomarkers are lacking. Therefore, the present study aimed to identify molecular biomarkers in primary tumors associated with RAI refractoriness. A retrospective cohort was gathered consisting of RAI-sensitive patients with DTC and RAI-refractory patients with poorly DTC. In all patients, extensive intratumoral mutation profiling, gene fusions analysis, telomerase reverse transcriptase (TERT) promoter mutation analysis and formalin-fixed paraffin-embedded-compatible RNA sequencing were performed. Genetic analyses revealed an increased mutational load in RAI-refractory DTC, including mutations in AKT1, PTEN, TP53 and TERT promoter. Transcriptomic analyses revealed profound differential expression of insulin-like growth factor 2 (IGF2), with up to 100-fold higher expression in RAI-refractory DTC compared with in RAI-sensitive DTC cases. ELISA revealed significant lower IGF2 plasma concentrations after surgery and subsequent I-131 RAI therapy in patients with DTC compared with pretreatment baseline. Overall, the current findings suggested that the tumor-promoting growth factor IGF2 may have a potential role in acquiring RAI refractoriness.Diabetes mellitus: pathophysiological changes and therap

    Digoxin treatment reactivates in vivo radioactive iodide uptake and correlates with favorable clinical outcome in non-medullary thyroid cancer

    Get PDF
    Purpose Non-medullary thyroid cancer (NMTC) treatment is based on the ability of thyroid follicular cells to accumulate radioactive iodide (RAI). However, in a subset of NMTC patients tumor dedifferentiation occurs, leading to RAI resistance. Digoxin has been demonstrated to restore iodide uptake capacity in vitro in poorly differentiated and anaplastic NMTC cells, termed redifferentiation. The aim of the present study was to investigate the in vivo effects of digoxin in TPO-Cre/LSL-Braf(V600E) mice and digoxin-treated NMTC patients. Methods Mice with thyroid cancer were subjected to 3D ultrasound for monitoring tumor growth and I-124 PET/CT for measurement of intratumoral iodide uptake. Post-mortem analyses on tumor tissues comprised gene expression profiling and measurement of intratumoral autophagy activity. Through PALGA (Dutch Pathology Registry), archived tumor material was obtained from 11 non-anaplastic NMTC patients who were using digoxin. Clinical characteristics and tumor material of these patients were compared to 11 matched control NMTC patients never treated with digoxin. Results We found that in mice, tumor growth was inhibited and I-124 accumulation was sustainably increased after short-course digoxin treatment. Post-mortem analyses revealed that digoxin treatment increased autophagy activity and enhanced expression of thyroid-specific genes in mouse tumors compared to vehicle-treated mice. Digoxin-treated NMTC patients exhibited significantly higher autophagy activity and a higher differentiation status as compared to matched control NMTC patients, and were associated with favourable clinical outcome. Conclusions These in vivo data support the hypothesis that digoxin may represent a repositioned adjunctive treatment modality that suppresses tumor growth and improves RAI sensitivity in patients with RAI-refractory NMTC.Diabetes mellitus: pathophysiological changes and therap

    Digoxin treatment reactivates in vivo radioactive iodide uptake and correlates with favorable clinical outcome in non-medullary thyroid cancer

    No full text
    PURPOSE: Non-medullary thyroid cancer (NMTC) treatment is based on the ability of thyroid follicular cells to accumulate radioactive iodide (RAI). However, in a subset of NMTC patients tumor dedifferentiation occurs, leading to RAI resistance. Digoxin has been demonstrated to restore iodide uptake capacity in vitro in poorly differentiated and anaplastic NMTC cells, termed redifferentiation. The aim of the present study was to investigate the in vivo effects of digoxin in TPO-Cre/LSL-Braf(V600E) mice and digoxin-treated NMTC patients. METHODS: Mice with thyroid cancer were subjected to 3D ultrasound for monitoring tumor growth and (124)I PET/CT for measurement of intratumoral iodide uptake. Post-mortem analyses on tumor tissues comprised gene expression profiling and measurement of intratumoral autophagy activity. Through PALGA (Dutch Pathology Registry), archived tumor material was obtained from 11 non-anaplastic NMTC patients who were using digoxin. Clinical characteristics and tumor material of these patients were compared to 11 matched control NMTC patients never treated with digoxin. RESULTS: We found that in mice, tumor growth was inhibited and (124)I accumulation was sustainably increased after short-course digoxin treatment. Post-mortem analyses revealed that digoxin treatment increased autophagy activity and enhanced expression of thyroid-specific genes in mouse tumors compared to vehicle-treated mice. Digoxin-treated NMTC patients exhibited significantly higher autophagy activity and a higher differentiation status as compared to matched control NMTC patients, and were associated with favourable clinical outcome. CONCLUSIONS: These in vivo data support the hypothesis that digoxin may represent a repositioned adjunctive treatment modality that suppresses tumor growth and improves RAI sensitivity in patients with RAI-refractory NMTC
    corecore