28 research outputs found
Role of micropipes in the formation of pores at foreign polytype boundaries in SiC crystals
The role of micropipes in pore formation in SiC crystals with foreign polytype inclusions is studied by means of synchrotron phase sensitive radiography, optical and scanning electron microscopies, and color photoluminescence. The pores at the inclusion boundaries are revealed, and their shapes and locations are analyzed. It is found that the pores arise due to the attraction of micropipes by the foreign polytype interfaces, followed by micropipe coalescence. The observed pores have tubular or slit shapes. Tubular pores nucleate at the inclusion corners, where the inclusion-associated stresses are concentrated. Slit pores spread between them and follow the shape of the inclusion boundaries. We explain the observations within a two-dimensional model of elastic interaction between micropipes and inclusion boundaries, which accounts for free surfaces of micropipes.open119sciescopu
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
Structural transformation of lattice defects in free-spreading growth of bulk SiC crystals
Using synchrotron X-ray topography and phase-contrast imaging, we investigated lattice defects in bulk SiC crystals grown by physical vapor transport in a free spreading condition. We find that polytype inclusions appearing at initial growth stage are overgrown by the matrix, making pores which are then transformed into micropipes with a low density of 10 cm(-2), in particular, in the lateral region. We propose that complex planar defects configured from dislocations and micropipes are transformed into slit pores via vacancy-diffusion and micropipes-attraction mechanisms. Our finding suggests that suppression of the nucleation of foreign polytype inclusions is a key approach for providing high quality free spreading SiC growth.open110sciescopu
Structural transformation of dislocated micropipes in silicon carbide
The interaction of super screw-dislocations, or micropipes, in PVT grown SiC crystals has been studied by Synchrotron Radiation radiography. The reduction in micropipe density via reactions of coalescence, annihilation and transformation of micropipes has been observed. The reactions have been described quantitatively based on the micromechanics of these defects.X115sciescopu
SR phase contrast imaging to address the evolution of defects during SiC growth
Sliced SiC boule grown by physical vapor transport is investigated using synchrotron white beam phase contrast imaging combined with Bragg diffraction. The evolution of defects is revealed. In the early growth stage, foreign polytype inclusions not only induce massive generation of full-core dislocations and dislocated micropipes but also attract them, forming slit-type pores at the boundaries of inclusions. In the intermediate stage, when inclusions stop to grow and become overgrown by the matrix, the pore density significantly reduces, which is attributed to their transformation into new micropipes. In the later stage, the micropipe density decreases, providing evidence for their partial annihilation and healing. Mechanisms for the evolution from inclusions to pores and finally to micropipes during the crystal growth are further discussed. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimX1165sciescopu
Micropipe absorption mechanism of pore growth at foreign polytype boundaries in SiC crystals
Formation of pores at foreign polytype boundaries in bulk SiC crystals is studied by means of synchrotron radiation phase-sensitive radiography, optical and scanning electron microscopies, and color photoluminescence. It is demonstrated that pores are formed through coalescence of micropipes and extend along the polytype boundaries by means of micropipe absorption. A theoretical model is suggested, which describes the micropipe absorption by an elliptic pore nucleated at the boundary of a foreign polytype inclusion. It is shown that depending on the inclusion distortion, the pore can either be a separate micropipe, or grow up to a certain length, or occupy the whole facet of the inclusion.open1144sciescopu
Ligand hyperfine interaction at the neutral silicon vacancy in 4H- and 6H-SiC
The silicon vacancy in its neutral charge state (V-Si) has been unambiguously identified in 4H- and 6H-SiC. This was achieved by observation of ligand hyperfine interaction with the four carbon atoms in the nearest-neighbor shell and the twelve silicon atoms in the next-nearest-neighbor shell surrounding the vacancy. The complete hyperfine tensors have been determined for the V-Si(0) center residing at all inequivalent lattice sites in the two polytypes. These are compared with the parameters previously obtained for the negatively charged silicon vacancy
Synchrotron radiographic study and computer simulation of reactions between micropipes in silicon carbide
By using synchrotron radiation phase sensitive radiography we have examined the reactions of screw superdislocations or micropipes in silicon carbide single crystals: bundling, twisting, and splitting. To understand the nature of these reactions, a model of micropipe motion during crystal growth has been proposed. Based on this model, a computer simulation of the evolution of a random micropipe ensemble has been performed. The simulation demonstrates that the coalescence of micropipes with opposite-sign Burgers vectors may be realized in two ways: (i) their straightforward movement towards each other or (ii) their revolution about one another. Twisted dislocation dipoles arise when two micropipes are under strong influence of the stress fields from dense groups of other micropipes. The transformation of dipoles into semiloops as well as the annihilation of micropipes result in diminishing of their average density. (C) 2003 American Institute of Physics.open111717sciescopu
Micropipe evolution in silicon carbide
Micropipe bundling and twisting in SiC crystals was revealed using synchrotron x-ray phase sensitive radiography. The computer simulation of micropipe evolution during the crystal growth suggests that the bundled and twisted micropipes arise under the influence of stress fields from other neighboring micropipes. The annihilation of twisted dipoles is attributed to their transformation into semiloops. Reactions of micropipe coalescence lead to the generation of micropipes and/or the annihilation of initial micropipes, resulting in the decrease in their average density. (C) 2003 American Institute of Physics.open111515sciescopu