30 research outputs found

    Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity

    Get PDF
    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples

    Detection and verification of malting quality QTLs using wild barley introgression lines

    Get PDF
    A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs

    Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    Get PDF
    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision

    Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties

    Get PDF
    Insertional mutations leading to expansion of the octarepeat domain of the prion protein (PrP) are directly linked to prion disease. While normal PrP has four PHGGGWGQ octapeptide segments in its flexible N-terminal domain, expanded forms may have up to nine additional octapeptide inserts. The type of prion disease segregates with the degree of expansion. With up to four extra octarepeats, the average onset age is above 60 years, whereas five to nine extra octarepeats results in an average onset age between 30 and 40 years, a difference of almost three decades. In wild-type PrP, the octarepeat domain takes up copper (Cu2+) and is considered essential for in vivo function. Work from our lab demonstrates that the copper coordination mode depends on the precise ratio of Cu2+ to protein. At low Cu2+ levels, coordination involves histidine side chains from adjacent octarepeats, whereas at high levels each repeat takes up a single copper ion through interactions with the histidine side chain and neighboring backbone amides. Here we use both octarepeat constructs and recombinant PrP to examine how copper coordination modes are influenced by octarepeat expansion. We find that there is little change in affinity or coordination mode populations for octarepeat domains with up to seven segments (three inserts). However, domains with eight or nine total repeats (four or five inserts) become energetically arrested in the multi-histidine coordination mode, as dictated by higher copper uptake capacity and also by increased binding affinity. We next pooled all published cases of human prion disease resulting from octarepeat expansion and find remarkable agreement between the sudden length-dependent change in copper coordination and onset age. Together, these findings suggest that either loss of PrP copper-dependent function or loss of copper-mediated protection against PrP polymerization makes a significant contribution to early onset prion disease

    SOAP3: GPU-based compressed indexing and ultra-fast parallel alignment of short reads

    No full text
    Session 3The 3rd Workshop on Massive Data Algorithmics (MASSIVE 2011), Paris, France, 16 June 2011
    corecore