1,865 research outputs found

    Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)

    Get PDF
    (1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. (2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically. (3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood. (4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm. (5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. (6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation. in embryos of turned eggs

    Tomography of Electrospun Carbon Nanotube Polymeric Blends by Focus Ion Beam: Alignment and Phase Separation Analysis from Multicontrast Electron Imaging

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Multimodal focused ion beam (FIB) imaging on a polydimethylsiloxane/poly(methyl methacrylate) (PMMA)/multiwall carbon nanotube (MWCNT) electrospun composite has been applied to discriminate the phase-separated polymer blend and identify MWCNT fillers. Upon tomographic reconstruction, this discrimination has been possible through both atomic number and voltage contrast, the latter being enabled by preferential MWCNT segregation to PMMA. This study suggests that electrospinning could be affecting not only MWCNT alignment but also phase separation dynamics of immiscible polymers, yielding a porous structure throughout the fibers. This work opens the door to correlative materials science in polymer nanocomposites through FIB tomography, where voltage contrast is a main actor. (Figure presented.)

    Revealing New Mouse Epicardial Cell Markers through Transcriptomics

    Get PDF
    The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available.Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays.Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury.This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer

    Can we trust “Magnitude-based inference”?

    Get PDF
    Since the times and works of William Sealy Gosset (1876-1937) and Ronald Aylmer Fisher (1890-1962), imperfections of conventional null-hypothesis significance testing and in particular, use of P-values to evaluate such testing (invariably referred to as inferential statistics), have been well recognised (Wilkinson, 1999; Wasserstein and Lazar, 2016). Attempts have been made to identify alternatives. For example, Cohen's effect sizes (Cohen 1988) and region of practical equivalence procedure (ROPE) (Kruschke, 2014). A more recent alternative is magnitude-based inference (MBI) (Hopkins and Baterham, 2016) although unlike others, MBI has created considerable controversy when reporting the results of studies (almost exclusively used in the field of sport and exercise science). Instead of defining research effects as “significant” based on P-values (using traditional hypothesis testing), MBI uses terms such as “implementable” and “substantial” based on two constraints called the “risk of harm” and the “chance of benefit”. However, concerns have been raised about the MBI approach. Stanford statistician Kristin Sainani was so concerned about the consequences of using MBI that she wrote a formal analysis of the MBI method. Published in MSSE (Sainani, 2018) her paper showed that, depending on sample size and thresholds for harm/benefit, MBI produces false positive rates that can be two to six times greater than those using traditional hypothesis testing. A finding, she claims, that makes MBI less reliable.Published versio

    Functional Analysis of the Two Brassica AP3 Genes Involved in Apetalous and Stamen Carpelloid Phenotypes

    Get PDF
    The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation

    Embodiment and the origin of interval timing: kinematic and electromyographic data

    Get PDF
    Recent evidence suggests that interval timing (the judgment of durations lasting from approximately 500 ms. to a few minutes) is closely coupled to the action control system. We used surface electromyography (EMG) and motion capture technology to explore the emergence of this coupling in 4-, 6-, and 8-month-olds. We engaged infants in an active and socially relevant arm-raising task with 7 cycles and response period. In one condition cycles were slow (every 4 seconds) in another they were fast (every 2 seconds). In the slow condition, we found evidence of time locked sub-threshold EMG activity even in the absence of any observed overt motor responses at all 3 ages. This study shows that EMGs can be a more sensitive measure of interval timing in early development than overt behavior

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature
    • …
    corecore