34 research outputs found

    Locomotor Adaptation versus Perceptual Adaptation when Stepping Over an Obstacle with a Height Illusion

    Get PDF
    Background During locomotion, vision is used to perceive environmental obstacles that could potentially threaten stability; locomotor action is then modified to avoid these obstacles. Various factors such as lighting and texture can make these environmental obstacles appear larger or smaller than their actual size. It is unclear if gait is adapted based on the actual or perceived height of these environmental obstacles. The purposes of this study were to determine if visually guided action is scaled to visual perception, and to determine if task experience influenced how action is scaled to perception. Methodology/Principal Findings Participants judged the height of two obstacles before and after stepping over each of them 50 times. An illusion made obstacle one appear larger than obstacle two, even though they were identical in size. The influence of task experience was examined by comparing the perception-action relationship during the first five obstacle crossings (1–5) with the last five obstacle crossings (46–50). In the first set of trials, obstacle one was perceived to be 2.0 cm larger than obstacle two and subjects stepped 2.7 cm higher over obstacle one. After walking over the obstacle 50 times, the toe elevation was not different between obstacles, but obstacle one was still perceived as 2.4 cm larger. Conclusions/Significance There was evidence of locomotor adaptation, but no evidence of perceptual adaptation with experience. These findings add to research that demonstrates that while the motor system can be influenced by perception, it can also operate independent of perception

    When Is Visual Information Used to Control Locomotion When Descending a Kerb?

    Get PDF
    YesBackground: Descending kerbs during locomotion involves the regulation of appropriate foot placement before the kerb-edge and foot clearance over it. It also involves the modulation of gait output to ensure the body-mass is safely and smoothly lowered to the new level. Previous research has shown that vision is used in such adaptive gait tasks for feedforward planning, with vision from the lower visual field (lvf) used for online updating. The present study determined when lvf information is used to control/update locomotion when stepping from a kerb. Methodology/Principal Findings: 12 young adults stepped down a kerb during ongoing gait. Force sensitive resistors (attached to participants' feet) interfaced with an high-speed PDLC 'smart glass' sheet, allowed the lvf to be unpredictably occluded at either heel-contact of the penultimate or final step before the kerb-edge up to contact with the lower level. Analysis focussed on determining changes in foot placement distance before the kerb-edge, clearance over it, and in kinematic measures of the step down. Lvf occlusion from the instant of final step contact had no significant effect on any dependant variable (p>0.09). Occlusion of the lvf from the instant of penultimate step contact had a significant effect on foot clearance and on several kinematic measures, with findings consistent with participants becoming uncertain regarding relative horizontal location of the kerb-edge. Conclusion/Significance: These findings suggest concurrent feedback of the lower limb, kerb-edge, and/or floor area immediately in front/below the kerb is not used when stepping from a kerb during ongoing gait. Instead heel-clearance and pre-landing-kinematic parameters are determined/planned using lvf information acquired in the penultimate step during the approach to the kerb-edge, with information related to foot placement before the kerb-edge being the most salient

    The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care

    Get PDF
    Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

    Effects of resistance training, detraining, and retraining on strength and functional capacity in elderly

    No full text
    Background: The interruption of training (detraining) results in loss of the gains acquired. Partial retention could occur after detraining, and variation in training stimuli may optimize retraining adaptations. Aim: To evaluate the effect of a resistance-retraining program on strength and functional capacity performance after a detraining period. Methods: Ten elderly men and women (63–68 years) completed 12 weeks of training, 16 weeks of detraining, and 8 weeks of retraining. One-repetition maximum (1-RM) at 45° leg press, maximum isometric knee extension torque, rate of torque development (RTD), 30-s sit-to-stand, timed up and go, and stair ascent and descent tests were assessed. Results: The 1-RM increased after training (p 0.05). For RTD and 30-s sit-to-stand, there was an increase after retraining when compared to pre-training values (p < 0.05). For timed up and go and stair ascent and descent, reductions were observed between pre-training and post-training periods (p < 0.05), only timed up and go increased after the detraining period (p < 0.01). Discussion: After 16 weeks of detraining, the maximum strength did not return to baseline levels, and a retraining with explosive strength exercise sessions can recover maximum strength gains, RTD, and functional capacity at the same level obtained after a detraining period. Conclusions: The inclusion of an explosive strength session in retraining period improves RTD and 30-s sit-to-stand performance and can accelerate the recovery of strength after a detraining period.</p
    corecore