11 research outputs found
Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density‑dependent manner
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed= transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory
Translation of Aviation Safety Principles to Patient Safety in Surgery
The aviation industry functions as a high-reliability organization that has used a variety of practices to maintain an enviable safety record, despite the inherent risks of flying. The inherent risks associated with air transport, the team structure of its aircrews, and the importance of a methodical approach in completing critical tasks, makes it in many ways similar to the perioperative setting. Using simulator training, line-oriented safety audits, check airmen, crew resource management, checklists, incident reporting, root cause analysis, and various communication strategies, the aviation industry has established itself as a leader in safety protocols to ensure high reliability. However, the safety record of surgery as a whole has not been so enviable
Induced Fungal Resistance to Insect Grazing:Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System
<p>Background: Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi.</p><p>Methodology/Principal Findings: Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding.</p><p>Conclusions/Significance: Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats. Induced fungal defence responses thus need to be included if we wish to have a complete conception of animal-fungus co-evolution, fungal gene regulation, and multitrophic interactions.</p>
Molecular population genetics of elicitor-induced resistance genes in European aspen (Populus tremula L., Salicaceae)
Owing to their long life span and ecological dominance in many communities, forest trees are subject to attack from a diverse array of herbivores throughout their range, and have therefore developed a large number of both constitutive and inducible defenses. We used molecular population genetics methods to examine the evolution of eight genes in European aspen, Populus tremula, that are all associated with defensive responses against pests and/or pathogens, and have earlier been shown to become strongly up-regulated in poplars as a response to wounding and insect herbivory. Our results show that the majority of these defense genes show patterns of intraspecific polymorphism and site-frequency spectra that are consistent with a neutral model of evolution. However, two of the genes, both belonging to a small gene family of polyphenol oxidases, show multiple deviations from the neutral model. The gene PPO1 has a 600 bp region with a highly elevated K(A)/K(S) ratio and reduced synonymous diversity. PPO1 also shows a skew toward intermediate frequency variants in the SFS, and a pronounced fixation of non-synonymous mutations, all pointing to the fact that PPO1 has been subjected to recurrent selective sweeps. The gene PPO2 shows a marked excess of high frequency, derived variants and shows many of the same trends as PPO1 does, even though the pattern is less pronounced, suggesting that PPO2 might have been the target of a recent selective sweep. Our results supports data from both Populus and other species which have found that the the majority of defense-associated genes show few signs of selection but that a number of genes involved in mediating defense against herbivores show signs of adaptive evolution