297 research outputs found

    Sequence Skill Acquisition and Off-Line Learning in Normal Aging

    Get PDF
    It is well known that certain cognitive abilities decline with age. The ability to form certain new declarative memories, particularly memories for facts and events, has been widely shown to decline with advancing age. In contrast, the effects of aging on the ability to form new procedural memories such as skills are less well known, though it appears that older adults are able to acquire some new procedural skills over practice. The current study examines the effects of normal aging on procedural memory more closely by comparing the effects of aging on the encoding or acquisition stage of procedural learning versus its effects on the consolidation, or between-session stage of procedural learning. Twelve older and 14 young participants completed a sequence-learning task (the Serial Reaction Time Task) over a practice session and at a re-test session 24 hours later. Older participants actually demonstrated more sequence skill during acquisition than the young. However, older participants failed to show skill improvement at re-test as the young participants did. Age thus appears to have a differential effect upon procedural learning stages such that older adults' skill acquisition remains relatively intact, in some cases even superior, compared to that of young adults, while their skill consolidation may be poorer than that of young adults. Although the effect of normal aging on procedural consolidation remains unclear, aging may actually enhance skill acquisition on some procedural tasks

    Joint association analysis of bivariate quantitative and qualitative traits

    Get PDF
    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF

    Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure

    Full text link
    We have used a Hartree-type electron-helium potential together with a density functional description of liquid 4^4He and 3^3He to study the explosion of electron bubbles submitted to a negative pressure. The critical pressure at which bubbles explode has been determined as a function of temperature. It has been found that this critical pressure is very close to the pressure at which liquid helium becomes globally unstable in the presence of electrons. It is shown that at high temperatures the capillary model overestimates the critical pressures. We have checked that a commonly used and rather simple electron-helium interaction yields results very similar to those obtained using the more accurate Hartree-type interaction. We have estimated that the crossover temperature for thermal to quantum nucleation of electron bubbles is very low, of the order of 6 mK for 4^4He.Comment: 22 pages, 9 figure

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Insulin/IGF and Sex Hormone Axes in Human Endometrium and Associations with Endometrial Cancer Risk Factors

    Get PDF
    Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point-object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2012 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Very low prevalence of epidermal growth factor receptor (EGFR) protein expression and gene amplification in Saudi breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers which demonstrate EGFR protein expression, gene amplification and/or gene mutations may benefit therapeutically from tyrosine kinase inhibitors. In Western studies, EGFR protein expression has been demonstrated in 7-36% of breast cancer patients, while gene amplification has been found in around 6% of cases and mutations were either absent or extremely rare. Studies addressing EGFR protein expression and gene amplification in Saudi breast cancer patients are extremely scanty and the results reported have been mostly non-conclusive. Herein we report the prevalence of EGFR protein expression and gene amplification in a cohort of Saudi breast cancer patients.</p> <p>Findings</p> <p>We noticed a remarkably low incidence of EGFR protein expression (1.3%) while analyzing the spectrum of molecular subtypes of breast cancer in a Saudi population by immunohistochemistry. Also, <it>EGFR </it>gene amplification could not be demonstrated in any of 231 cases studied using silver enhanced <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The extremely low incidence of EGFR protein expression and gene amplification in Saudi breast cancer patients as compared to Western populations is most probably ethnically related as supported by our previous finding in the same cohort of a spectrum of molecular breast cancer types that is unique to the Saudi population and in stark contrast with Western and other regionally based studies. Further support to this view is provided by earlier studies from Saudi Arabia that have similarly shown variability in molecular breast cancer subtype distribution between Saudi and Caucasian populations as well as a predominance of the high-grade pathway in breast cancer development in Middle East women. More studies on EGFR in breast cancer are needed from different regions of Saudi Arabia before our assumption can be confirmed, however.</p
    • …
    corecore